We demonstrate fully three-dimensional and patterned localization of nitrogen-vacancy (NV) centers in diamond with coherence times in excess of 1 ms. Nitrogen δ-doping during chemical vapor deposition diamond growth vertically confines nitrogen to 4 nm while electron irradiation with a transmission electron microscope laterally confines vacancies to less than 450 nm. We characterize the effects of electron energy and dose on NV formation. Importantly, our technique enables the formation of reliably high-quality NV centers inside diamond nanostructures with applications in quantum information and sensing.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.nanolett.5b05304DOI Listing

Publication Analysis

Top Keywords

nitrogen-vacancy centers
8
electron irradiation
8
patterned formation
4
formation highly
4
highly coherent
4
coherent nitrogen-vacancy
4
centers focused
4
electron
4
focused electron
4
irradiation technique
4

Similar Publications

Nitrogen vacancy mediated g-CN/BiVO Z-scheme heterostructure nanostructures for exceptional photocatalytic performance.

Environ Res

December 2024

School of Materials and Chemistry, Analytical and Testing Center, Innovation Center of Nuclear Environmental Safety Technology, Southwest University of Science and Technology, Mianyang, 621010, China. Electronic address:

In this work, a novel V-g-CN/BiVO (V-CN/BVO) Z-scheme heterojunction photocatalyst was formed by introducing nitrogen vacancies (V) and constructing heterojunction, which is able to efficiently degrade the representative contaminant rhodamine B (RhB) upon exposure to visible-light, resulting in an outstanding degradation rate of 98.91% of RhB within 30 min. This photocatalyst exhibits catalytic universality and allows the degradation of methylene blue (MB, 97.

View Article and Find Full Text PDF

Background noise interferes with the accurate detection of early tumor biomarkers. This study introduces a method that effectively reduces background noise to enhance detection accuracy by combining a color-coded signaling approach with the unique fluorescent properties and room-temperature tunable quantum spin characteristics of fluorescent diamonds (FNDs) with nitrogen-vacancy centers. In this approach, a red signal indicates the presence of the target analyte within the spectral region, a green signal indicates its absence, and a yellow signal indicates the need for further analysis using FNDs' quantum spin properties for optical detection magnetic resonance (ODMR) to distinguish the FND signal from background noise.

View Article and Find Full Text PDF

Sensitive and accurate miRNA detection is important in cancer diagnosis but remains challenging owing to the essential features of miRNAs, such as their small size, high homology, and low abundance. This work proposes a novel electrochemical (EC)-enhanced quantum sensor achieving quantitative detection of miRNA-155 with simultaneous EC sensing. Specifically, fluorescent nanodiamonds/MXene nanocomposites were synthesized and modified with dual-mode signal labels, enabling miRNA-155 concentration measurement via relaxation time of nitrogen-vacancy (NV) centers and EC signals.

View Article and Find Full Text PDF

Bright Quantum-Grade Fluorescent Nanodiamonds.

ACS Nano

December 2024

Department of Chemistry, Graduate School of Life, Environmental, Natural Science and Technology, Okayama University, Okayama 700-8530, Japan.

Optically accessible spin-active nanomaterials are promising as quantum nanosensors for probing biological samples. However, achieving bioimaging-level brightness and high-quality spin properties for these materials is challenging and hinders their application in quantum biosensing. Here, we demonstrate bright fluorescent nanodiamonds (NDs) containing 0.

View Article and Find Full Text PDF

Quadrupolar Resonance Spectroscopy of Individual Nuclei Using a Room-Temperature Quantum Sensor.

Nano Lett

December 2024

Quantum Engineering Laboratory, Department of Electrical and Systems Engineering, University of Pennsylvania, 200 S. 33rd St., Philadelphia, Pennsylvania 19104, United States.

Nuclear quadrupolar resonance (NQR) spectroscopy reveals chemical bonding patterns in materials and molecules through the unique coupling between nuclear spins and local fields. However, traditional NQR techniques require macroscopic ensembles of nuclei to yield a detectable signal, which obscures molecule-to-molecule variations. Solid-state spin qubits, such as the nitrogen-vacancy (NV) center in diamond, facilitate the detection and control of individual nuclei through their local magnetic couplings.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!