Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Coral reef ecosystems depend on symbiosis between dinoflagellates of the genus Symbiodinium Freudenthal and their various hosts. The physiological characteristics associated with a particular lineage or species of Symbiodinium can determine a host's susceptibility to harmful bleaching. Therefore, the threat posed by global climate change on a host may be reduced if it can switch or shuffle its dominant algal symbiont type. An important prerequisite to this potential to switch or shuffle is the ability to host multiple alternative dominant symbiont genotypes. To examine the distribution of this trait, we review reports of mixed Symbiodinium infections in corals and nonscleractinian hosts from a phylogenetic perspective. Hosts showing evidence of mixed infection are broadly distributed across the most deeply divergent host lineages, including foraminifera, mollusks, sponges, and cnidarians. The occurrence of mixed infections is also broadly distributed across most clades of scleractinian corals. Individual colonies of certain well-studied cosmopolitan coral genera, such as Acropora, Montastraea, and Pocillopora, yield many reports of mixed infection, while other genera, such as Porites, do not. We further discuss mixed Symbiodinium infections in the context of evolutionary ecology theory. Selection pressures that affect the prevalence of mixed infection may be exerted by variation in host environment, host ontogeny, symbiont transmission strategy, host regulation of symbiont populations, availability of free-living symbiont lineages, competition between symbiont lineages, and niche partitioning of the internal host environment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1529-8817.2012.01220.x | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!