Astrocytes, the most numerous cells in the human brain, play a central role in the metabolic homeostasis following hypoxic injury. Caveolin-1 (Cav-1), a transmembrane scaffolding protein, has been shown to converge prosurvival signaling in the central nerve system. The present study aimed to investigate the role of Cav-1 in the hypoxia-induced astrocyte injury. We also examined how Cav-1 alleviates apoptotic astrocyte death. To this end, primary astrocytes were exposed to oxygen-glucose deprivation (OGD) for 6 h and a subsequent 24-h reoxygenation to mimic hypoxic injury. OGD significantly reduced Cav-1 expression. Downregulation of Cav-1 using Cav-1 small interfering RNA dramatically worsened astrocyte cell damage and impaired cellular glutamate uptake after OGD, whereas overexpression of Cav-1 with Cav-1 scaffolding domain peptide attenuated OGD-induced cell apoptosis. Mechanistically, the expressions of Ras-GTP, phospho-Raf, and phospho-ERK were sequestered in Cav-1 small interfering RNA-treated astrocytes, yet were stimulated after supplementation with caveolin peptide. MEK/ERK inhibitor U0126 remarkably blocked the Cav-1-induced counteraction against apoptosis following hypoxia, indicating Ras/Raf/ERK pathway is required for the Cav-1's prosurvival role. Together, these findings support Cav-1 as a checkpoint for the in hypoxia-induced astrocyte apoptosis and warrant further studies targeting Cav-1 to treat hypoxic-ischemic brain injury.

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajpcell.00309.2015DOI Listing

Publication Analysis

Top Keywords

hypoxia-induced astrocyte
12
cav-1
11
astrocyte apoptosis
8
ras/raf/erk pathway
8
hypoxic injury
8
cav-1 cav-1
8
cav-1 small
8
small interfering
8
astrocyte
5
caveolin-1 checkpoint
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!