BODIPY-immobilized zirconium-based nanoscale metal-organic frameworks (MOFs), named , have been synthesized through solvent-assisted ligand exchange using UiO-typed MOFs and pre-designed BODIPY ligands for the first time. The nanocrystal has been proved to possess good biocompatibility and highly efficient generation of singlet oxygen, which could kill the cancer cells effectively.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c6cc01048b | DOI Listing |
Nanoscale
January 2025
Institut de Chimie Moléculaire de l'Université de Bourgogne (ICMUB), UMR CNRS 6302, Université de Bourgogne, 9 avenue Alain Savary, 21078 Dijon, France.
Interfacing metal frameworks with carbon-based materials is attractive for the bottom-up construction of nanocomposite functional materials. The stepwise layering of difunctionalized diamantanes and gold metal from physical and chemical vapor deposition for the preparation of nanocomposites inverts the conventional preparation of metal-organic frameworks (MOFs) and self-assemblies, where the metal is introduced first, and this method delivers metal surfaces with modified properties originating from the sp-carbon core. However, appropriate diamondoid candidates for such an approach are rare.
View Article and Find Full Text PDFJ Phys Chem Lett
January 2025
Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, CAS Key Laboratory of Materials for Energy Conversion, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui 230026, P.R. China.
Half-metallicity, enabling 100% spin polarization, is pivotal for spintronics but remains challenging to achieve in low-dimensional materials. Using first-principles calculations, we theoretically propose an experimentally feasible two-dimensional (2D) metal-organic framework (MOF) magnetic semiconductor, Cr(TCNB) (TCNB = 1,2,4,5-tetracyanobenzene). This monolayer can be exfoliated from a Ag(100) substrate due to its low exfoliation energy of 0.
View Article and Find Full Text PDFACS Nano
January 2025
Department of Chemical and Biomolecular Engineering, National University of Singapore, 117585 Singapore.
C aromatic isomers, namely para-xylene (PX), meta-xylene (MX), ortho-xylene (OX), and ethylbenzene (EB), are essential industrial chemicals with a wide range of applications. The effective separation of these isomers is crucial across various sectors, including petrochemicals, pharmaceuticals, and polymer manufacturing. Traditional separation methods, such as distillation and solvent extraction, are energy-intensive.
View Article and Find Full Text PDFNanoscale Adv
December 2024
Department of Organic Chemistry, Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University 6517838683 Hamadan Iran
Here, a straightforward design is employed to synthesize a nanocatalyst based on a carbon-activated modified metal-organic framework using the solvothermal method. This work presents a simple and practical approach for producing the activated carbon derived from the Thymus plant (ACT) modified with amine-functionalized isoreticular metal-organic framework-3 (IRMOF-3) to create an ACT@IRMOF-3 core-shell structure. Successful functionalization was confirmed through N adsorption isotherms, FT-IR, FE-SEM, TEM, EDS, elemental mapping, TGA, and XRD analysis.
View Article and Find Full Text PDFACS Nano
January 2025
Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States.
This perspective highlights the transformative potential of Metal-Organic Frameworks (MOFs) in environmental and healthcare sectors. It discusses work that has advanced beyond technology readiness levels of >4 including applications in capture, storage, and conversion of gases to value added products. This work showcases efforts in the most salient applications of MOFs which have been performed at a great cadence, enabled by the federal government, large companies, and startups to commercialize these technologies despite facing significant challenges.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!