Understanding the structure of solid supported lipid multilayers is crucial to their application as a platform for novel materials. Conventionally, they are prepared from drop casting or spin coating of lipids dissolved in organic solvents, and lipid multilayers prepared from aqueous media and their structural characterisation have not been reported previously, due to their extremely low lipid solubility (i.e.∼10(-9) M) in water. Herein, using X-ray reflectivity (XRR) facilitated by a "bending mica" method, we have studied the structural characteristics of dioleoylphosphatidylcholine (DOPC) multilayers prepared via drop casting aqueous small unilamellar and multilamellar vesicle or liposome (i.e. SUV and MLV) dispersions on different surfaces, including mica, positively charged polyethylenimine (PEI) coated mica, and stearic trimethylammonium iodide (STAI) coated mica which exposes a monolayer of hydrocarbon tails. We suggest that DOPC liposomes served both as a delivery matrix where an appreciable lipid concentration in water (∼25 mg mL(-1) or 14 mM) was feasible, and as a structural precursor where the lamellar structure was readily retained on the rupture of the vesicles at the solid surface upon solvent evaporation to facilitate rapid multilayer formation. We find that multilayers on mica from MLVs exhibited polymorphism, whereas the SUV multilayers were well ordered and showed stronger stability against water. The influence of substrate chemistry (i.e. polymer coating, charge and hydrophobicity) on the multilayer structure is discussed in terms of lipid-substrate molecular interactions determining the bilayer packing proximal to the solid-liquid interface, which then had a templating effect on the structure of the bilayers distal from the interface, resulting in the overall different multilayer structural characteristics on different substrates. Such a fundamental understanding of the correlation between the physical parameters that characterise liposomes and substrate chemistry, and the structure of lipid multilayers underpins the potential development of a simple method via an aqueous liposome dispersion route for the inclusion of hydrophilic functional additives (e.g. drugs or nanoparticles) into lipid multilayer based hybrid materials, where tailored structural characteristics are an important consideration.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c6sm00369a | DOI Listing |
Commun Biol
January 2025
Xianghu Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, China.
Carbon catabolite repression (CCR) and de-repression (CCDR) are critical for fungal development and pathogenicity, yet the underlying regulatory mechanisms remain poorly understood in pathogenic fungi. Here, we identify a serine/threonine protein phosphatase catalytic subunit, Pp4c, as essential for growth, conidiation, virulence, and the utilization of carbohydrates and lipids in Magnaporthe oryzae. We demonstrate that the protein phosphatase 4 complex (Pp4c and Smek1 subunits), the AMP-activated protein kinase (AMPK) Snf1, and the transcriptional regulators CreA (repressor) and Crf1 (activator) collaboratively regulate the utilization of non-preferred carbon sources.
View Article and Find Full Text PDFJ Phys Chem Lett
January 2025
Soft Matter Biophysics, Institute for Condensed Matter Physics, TU Darmstadt, Hochschulstraße 8, 64289 Darmstadt, Germany.
Glycolipids are known to stabilize biomembrane multilayers through preferential sugar-sugar interactions that act as weak transient membrane cross-links. Here, we use small-angle and quasi-elastic neutron scattering on oligolamellar phospholipid vesicles containing defined glycolipid fractions in order to elucidate the influence of glycolipids on membrane mechanics and dynamics. Small-angle neutron scattering (SANS) reveals that the oligolamellar vesicles (OLVs) obtained by extrusion are polydisperse with regard to the number of lamellae, , which renders the interpretation of the quasi-elastic neutron spin echo (NSE) data nontrivial.
View Article and Find Full Text PDFSci Total Environ
January 2025
Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy. Electronic address:
Polyethylene nanoplastics (NPs) are widely diffused in terrestrial environments, including soil ecosystems, but the stress mechanisms in plants are not well understood. This study aimed to investigate the effects of two increasing concentrations of NPs (20 and 200 mg kg of soil) in lettuce. To this aim, high-throughput hyperspectral imaging was combined with metabolomics, covering both primary (using NMR) and secondary metabolism (using LC-HRMS), along with lipidomics profiling (using ion-mobility-LC-HRMS) and plant performance.
View Article and Find Full Text PDFAtherosclerosis
January 2025
State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Department of Cardiology of the Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang, China. Electronic address:
Background And Aims: Histologic studies indicated that healed plaque, characterized by a multilayered pattern, is indicative of prior atherothrombosis and subsequent healing. However, longitudinal in vivo data on healed plaque formation in non-culprit plaques are limited. This study aimed to investigate serial changes and clinical significance of new layered pattern formation in non-culprit plaques in patients with acute coronary syndromes (ACS) using serial optical coherence tomography (OCT) imaging.
View Article and Find Full Text PDFEnviron Health (Wash)
December 2024
Department of Environmental Science, Baylor University, Waco, Texas 76798-7266, United States.
Inhaled chemicals can cause dysfunction in the lung surfactant, a protein-lipid complex with critical biophysical and biochemical functions. This inhibition has many structure-related and dose-dependent mechanisms, making hazard identification challenging. We developed quantitative structure-activity relationships for predicting lung surfactant inhibition using machine learning.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!