In rat paraventricular thalamic nucleus (PVT) neurons, activation of thyrotropin-releasing hormone (TRH) receptors enhances neuronal excitability via concurrent decrease in a G protein-coupled inwardly rectifying K (GIRK)-like conductance and opening of a cannabinoid receptor-sensitive transient receptor potential canonical (TRPC)-like conductance. Here, we investigated the calcium (Ca(2+)) contribution to the components of this TRH-induced response. TRH-induced membrane depolarization was reduced in the presence of intracellular BAPTA, also in media containing nominally zero [Ca(2+)]o, suggesting a critical role for both intracellular Ca(2+) release and Ca(2+) influx. TRH-induced inward current was unchanged by T-type Ca(2+) channel blockade, but was decreased by blockade of high-voltage-activated Ca(2+) channels (HVACCs). Both the pharmacologically isolated GIRK-like and the TRPC-like components of the TRH-induced response were decreased by nifedipine and increased by BayK8644, implying Ca(2+) influx via L-type Ca(2+) channels. Only the TRPC-like conductance was reduced by either thapsigargin or dantrolene, suggesting a role for ryanodine receptors and Ca(2+)-induced Ca(2+) release in this component of the TRH-induced response. In pituitary and other cell lines, TRH stimulates MAPK. In PVT neurons, only the GIRK-like component of the TRH-induced current was selectively decreased in the presence of PD98059, a MAPK inhibitor. Collectively, the data imply that TRH-induced depolarization and inward current in PVT neurons involve both a dependency on extracellular Ca(2+) influx via opening of L-type Ca(2+) channels, a sensitivity of a TRPC-like component to intracellular Ca(2+) release via ryanodine channels, and a modulation by MAPK of a GIRK-like conductance component.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4935505PMC
http://dx.doi.org/10.1152/ajpregu.00082.2016DOI Listing

Publication Analysis

Top Keywords

pvt neurons
12
trh-induced response
12
ca2+ release
12
ca2+ influx
12
ca2+ channels
12
ca2+
11
girk-like conductance
8
trpc-like conductance
8
components trh-induced
8
intracellular ca2+
8

Similar Publications

Prosocial behaviors are advantageous to social species, but the neural mechanism(s) through which others receive benefit remain unknown. Here, we found that bystander mice display rescue-like behavior (tongue dragging) toward anesthetized cagemates and found that this tongue dragging promotes arousal from anesthesia through a direct tongue-brain circuit. We found that a direct circuit from the tongue → glutamatergic neurons in the mesencephalic trigeminal nucleus (MTN) → noradrenergic neurons in the locus coeruleus (LC) drives rapid arousal in the anesthetized mice that receive the rescue-like behavior from bystanders.

View Article and Find Full Text PDF

A single exposure to a stressful event can result in enduring changes in behaviour. Long-term modifications in neuronal networks induced by stress are well explored but the initial steps leading to these alterations remain incompletely understood. In this study, we found that acute stress exposure triggers an immediate increase in the firing activity of calretinin-positive neurons in the paraventricular thalamic nucleus (PVT/CR+) that persists for several days in mice.

View Article and Find Full Text PDF

Background: Link Samahan® (LS), a product of Link Natural Products (Pvt) Limited, Sri Lanka contains extracts of 14 medicinal plants. It is used as a prophylactic against cold and cold related symptoms. It has immunomodulatory activity, specifically enhancing the humoral immune response.

View Article and Find Full Text PDF

[NMDA receptors in prelimbic cortex neurons projecting to paraventricular nucleus of the thalamus are associated with morphine withdrawal memory retrieval].

Sheng Li Xue Bao

December 2024

State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China.

At present, the problem of drug addiction treatment mainly lies in the high relapse rate of drug addicts. Addictive drugs will bring users a strong sense of euphoria and promote drug seeking. Once the drug is withdrawn, there will be withdrawal symptoms such as strong negative emotions and uncomfortable physical reactions.

View Article and Find Full Text PDF

A Neural Circuit From Paraventricular Nucleus of the Thalamus to the Nucleus Accumbens Mediates Inflammatory Pain in Mice.

Brain Behav

January 2025

Department of Anesthesiology & Clinical Research Center for Anesthesia and Perioperative Medicine & Key Laboratory of Anesthesia and Analgesia Application Technology, Huzhou Central Hospital, The Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, Huzhou, China.

Article Synopsis
  • Inflammation-related pain alters pain sensitivity in mice, evidenced by reduced paw withdrawal thresholds and latencies in CFA-induced pain models.
  • Research highlights elevated c-Fos protein expression in the paraventricular nucleus of the thalamus (PVT), indicating neuron activation due to pain stimuli.
  • The study utilized optogenetics to modulate the PVT-NAc neural circuit, showing its significant role in how inflammatory pain is experienced and managed.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!