Synechococcus- and Prochlorococcus-specific narB genes that encode for an assimilatory nitrate reductase are found in coastal to open-ocean waters. However, it remains uncertain if these picocyanobacteria assimilate nitrate in situ. This unknown can potentially be addressed by examining narB mRNA from the environment, but this requires a better understanding of the influence of environmental factors on narB gene transcription. In laboratory experiments with Synechococcus sp. CC9311 cultures exposed to diel light fluctuations and grown on nitrate or ammonium, there was periodic change in narB transcript abundance. This periodicity was broken in cultures subjected to a doubling of irradiance (40-80 μmol photons · m(-2) · s(-1) ) during the mid-light period. Therefore, the irradiance level, not circadian rhythm, was the dominant factor controlling narB transcription. In nitrate-grown cultures, diel change in narB transcript abundance and nitrate assimilation rate did not correlate; suggesting narB mRNA levels better indicate nitrate assimilation activity than assimilation rate. Growth history also affected narB transcription, as changes in narB mRNA levels in nitrogen-deprived CC9311 cultures following nitrate amendment were distinct from cultures grown solely on nitrate. Environmental sampling for narB transcripts should consider time, irradiance, and the growth status of cells to ecologically interpret narB transcript abundances.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1529-8817.2012.01197.x | DOI Listing |
J Phycol
August 2012
Department of Ocean Sciences, University of California Santa Cruz, 1156 High Street EMS D446, Santa Cruz, CA 95064, USA.
Synechococcus- and Prochlorococcus-specific narB genes that encode for an assimilatory nitrate reductase are found in coastal to open-ocean waters. However, it remains uncertain if these picocyanobacteria assimilate nitrate in situ. This unknown can potentially be addressed by examining narB mRNA from the environment, but this requires a better understanding of the influence of environmental factors on narB gene transcription.
View Article and Find Full Text PDFEnviron Microbiol
December 2008
Department of Ocean Sciences, University of California Santa Cruz, 1156 High Street EMS D446, Santa Cruz, CA 95064, USA.
Nitrate, the most abundant combined, dissolved form of inorganic nitrogen in global oceans, is a common source of nitrogen (N) for phytoplankton including cyanobacteria. Using a nested polymerase chain reaction (PCR) method, the diversity of the cyanobacterial nitrate reductase gene, narB, was examined in plankton samples from a variety of marine habitats. A total of 480 narB gene fragment sequences were obtained from a coastal coral reef (Heron Island, Australia), open-ocean tropical and subtropical oceanic waters (Atlantic and Pacific Oceans) and a temperate N.
View Article and Find Full Text PDFAppl Environ Microbiol
April 2005
The Questor Centre and School of Biology and Biochemistry, The Queen's University of Belfast, Belfast, United Kingdom.
Clusters of genes which include determinants for the catalytic subunits of naphthalene dioxygenase (narAa and narAb) were analyzed in naphthalene-degrading Rhodococcus strains. We demonstrated (i) that in the region analyzed homologous gene clusters are separated from each other by nonhomologous DNA, (ii) that there are various degrees of homology between related genes, and (iii) that nar genes are located on plasmids in strains NCIMB12038 and P400 and on a chromosome in P200. These observations suggest that genetic exchange and reshuffling of genetic modules, as well as vertical descent of the genetic information, were the main routes in the evolution of naphthalene degradation in Rhodococcus.
View Article and Find Full Text PDFJ Bacteriol
October 2001
Laboratory of Molecular Plant Physiology, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, 464-8601 Japan.
In Synechocystis sp. strain PCC 6803, the genes encoding the proteins involved in nitrate assimilation are organized into two transcription units, nrtABCD-narB and nirA, the expression of which was repressed by ammonium and induced by inhibition of ammonium assimilation, suggesting involvement of NtcA in the transcriptional regulation. Under inducing conditions, expression of the two transcription units was enhanced by nitrite, suggesting regulation by NtcB, the nitrite-responsive transcriptional enhancer we previously identified in Synechococcus sp.
View Article and Find Full Text PDFJ Bacteriol
December 1999
Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA.
The nrtP and narB genes, encoding nitrate/nitrite permease and nitrate reductase, respectively, were isolated from the marine cyanobacterium Synechococcus sp. strain PCC 7002 and characterized. NrtP is a member of the major facilitator superfamily and is unrelated to the ATP-binding cassette-type nitrate transporters that previously have been described for freshwater strains of cyanobacteria.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!