A new type of surface-enhanced Raman scattering sensor for the enantioselective recognition of d/l-cysteine and d/l-asparagine based on a helically arranged Ag NPs@homochiral MOF.

Chem Commun (Camb)

College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, P. R. China.

Published: April 2016

For the first time, we report the synthesis of Ag nanoparticles (NPs) arranged in a helical structure on a chiral metal-organic framework via a facile process at room temperature. This material can serve as a new type of surface-enhanced Raman scattering sensor for the efficient recognition of d/l-cysteine and d/l-asparagine enantiomers.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c6cc00320fDOI Listing

Publication Analysis

Top Keywords

type surface-enhanced
8
surface-enhanced raman
8
raman scattering
8
scattering sensor
8
recognition d/l-cysteine
8
d/l-cysteine d/l-asparagine
8
sensor enantioselective
4
enantioselective recognition
4
d/l-asparagine based
4
based helically
4

Similar Publications

Phosphodiesterase type 5 inhibitors (PDE5is), primarily used for the treatment of erectile dysfunction, have been severely misused in recent years, posing a threat to public health and safety. This study developed a method that combines Surface-enhanced Raman spectroscopy (SERS) with machine learning algorithms to rapidly identify different PDE5is types. A total of 948 SERS spectra from 79 PDE5is were collected using gold nanoparticles (AuNPs) as the enhancement agent, and dimensionality reduction was performed through principal component analysis (PCA).

View Article and Find Full Text PDF

Optimization of Paper-Based Alveolar-Mimicking SERS Sensor for High-Sensitivity Detection of Antifungal Agent.

Biosensors (Basel)

November 2024

Department of Biomechatronic Engineering, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon 16419, Republic of Korea.

Crystal violet (CV) is a disinfectant and antifungal agent used in aquaculture that plays a vital role in treating aquatic diseases and sterilizing water. However, its potential for strong toxicity, including carcinogenicity and mutagenicity, upon accumulation in the body raises concerns regarding its safe use. Therefore, there is a growing need for the quantitative detection of CV in its early application stages to ensure human safety.

View Article and Find Full Text PDF

Alkane degradation coupled to Fe(III) reduction mediated by Gram-positive bacteria.

J Hazard Mater

December 2024

State Key Laboratory of Biogeology and Environmental Geology, School of Environmental Studies, China University of Geosciences, Wuhan 430078, China. Electronic address:

Petroleum hydrocarbon contamination, such as n-alkanes, poses a significant global threat to ecosystems and human health. Microbial remediation emerges as a promising strategy for addressing this issue through both aerobic and anaerobic processes. Notably, the majority of anaerobic hydrocarbon degraders identified to date are Gram-negative bacteria.

View Article and Find Full Text PDF

This study introduces a multifunctional device based on CuO/g-CN monitoring and purification p-n heterojunctions (MPHs), seamlessly integrating surface-enhanced Raman scattering (SERS) detection with photocatalytic degradation capabilities. The SERS and photocatalytic performances of the CuO in various morphologies, g-CN nanosheets (NSs) and CuO/g-CN MPHs with different g-CN mass ratios were systematically evaluated, with a particular emphasis on the CuO/g-CN-0.2 MPH, where g-CN constituted 20% of the total mass.

View Article and Find Full Text PDF

Surface-Enhanced Raman Scattering Nanoendoscope for Quantification of a Protein Released under Physiological Stimulation in Brain Tissue.

ACS Nano

December 2024

Département de Chimie, Institut Courtois, Quebec Center for Advanced Materials, Regroupement Québécois sur les Matériaux de Pointe, Université de Montréal, C.P. 6128 Succ. Centre-ville, Montréal H3C 3J7, Québec, Canada.

A surface-enhanced Raman scattering (SERS) biosensor with minimal invasiveness and high spatial resolution has been developed as a nanoendoscope to detect changes in protein concentrations at specific sites in biological tissues. While generally applicable to various tissues or proteins, the SERS nanoendoscope is demonstrated for the quantitative detection of S100β, an astrocytic protein whose plasmatic levels are known to vary in several neuropathologies such as Alzheimer's disease, schizophrenia, Down syndrome, Parkinson's disease and epilepsy, but for which intratissular levels have not been locally monitored, demonstrating key attributes of the SERS nanoendoscope. The SERS nanoendoscope is fabricated with densely and well-dispersed deposited gold nanoparticles modified with anti-S100β primary antibody on pulled optical fibers with a tip diameter of 700 nm, conducive to noninvasive and regiospecific detection of the S100β protein in different regions of mouse brain slices under different physiological stimuli with micrometer resolution.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!