Phononic crystals offer unique band structures for acoustic wave propagation. Fabricating intricate threedimensional phononic crystals allows a new class of devices with complex phononic band structures beyond capabilities of two-dimensional designs. We have successfully fabricated novel 3D phononic crystals with 1 mm lattice constant and minimum feature sizes as low as 100 micron using high-resolution stereolithography printing. Here we report the first theoretical calculations and experimental results demonstrating wide complete 3D phononic band gaps not attainable by corresponding 2D structures with the same lattice geometry. Longitudinal and shear wave propagation is suppressed by more than -60 dB in frequency bands as wide as 400 kHz to 1 MHz.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TUFFC.2016.2543527DOI Listing

Publication Analysis

Top Keywords

phononic crystals
16
complex phononic
8
wide complete
8
band gaps
8
band structures
8
wave propagation
8
phononic band
8
phononic
6
realization complex
4
crystals
4

Similar Publications

Band sorting based on global continuity of eigenvalues and topological properties of phononic crystals.

J Phys Condens Matter

January 2025

College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518000, People's Republic of China.

Band sorting is critical to obtaining physical properties from eigenvalues and eigenvectors that constitute the band diagram. We propose a band sorting method based on the global continuity and smoothness of the eigenvalues on the parameter space. Several strategies based on the connection between neighbor eigenvalues and how to sweep the parameter space are introduced to recognize level crossing degeneracies and level repulsion degeneracies.

View Article and Find Full Text PDF

High-resolution Brillouin spectroscopy was employed to investigate the anisotropy in surface wave velocities within a bulk single crystal of SbTe, a well-known layered van der Waals material. By leveraging the bulk elastic constants derived from various simulation methods, we were able to theoretically calculate the distribution of surface acoustic phonon velocities on the cleavage plane of the material. Upon analyzing multiple simulation results, it became evident that the most significant discrepancies arose in the calculations of the elastic constant c, with values ranging from 48 to 98 GPa.

View Article and Find Full Text PDF

Chemical modulation and defect engineering in high-performance GeTe-based thermoelectrics.

Chem Sci

January 2025

State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University Beijing 100084 China

Thermoelectric technology plays an important role in developing sustainable clean energy and reducing carbon emissions, offering new opportunities to alleviate current energy and environmental crises. Nowadays, GeTe has emerged as a highly promising thermoelectric candidate for mid-temperature applications, due to its remarkable thermoelectric figure of merit () of 2.7.

View Article and Find Full Text PDF

Spectral heat flux redistribution upon interfacial transmission.

J Phys Condens Matter

January 2025

Department of Mechanical Engineering, University of Nevada, Reno, 1664 N. Virginia Street, Reno, Nevada, 89557-0312, UNITED STATES.

In nonmetallic crystals, heat is transported by phonons of different frequencies, each contributing differently to the overall heat flux spectrum. In this study, we demonstrate a significant redistribution of heat flux among phonon frequencies when phonons transmit across the interface between dissimilar solids. This redistribution arises from the natural tendency of phononic heat to re-establish the bulk distribution characteristic of the material through which it propagates.

View Article and Find Full Text PDF

Metallic Bonding in Close-Packed Structures: Structural Frustration from a Hidden Gauge Symmetry.

Phys Rev Lett

December 2024

Department of Physics, Brock University, St. Catharines, Ontario L2S 3A1, Canada.

Based on its simple valence electron configuration, we may expect lithium to have straightforward physical properties that are easily explained. However, solid lithium, when cooled below 77 K, develops a complex structure that has been debated for decades. A close parallel is found in sodium below 36 K where the crystal structure still remains unresolved.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!