A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Quantum requirements for growth and fatty acid biosynthesis in the marine diatom Phaeodactylum tricornutum (Bacillariophyceae) in nitrogen replete and limited conditions. | LitMetric

Quantum requirements for growth and fatty acid biosynthesis in the marine diatom Phaeodactylum tricornutum (Bacillariophyceae) in nitrogen replete and limited conditions.

J Phycol

Environmental Biophysics and Molecular Ecology Program, Institute of Marine and Coastal Sciences, Rutgers University, 71 Dudley Road, New Brunswick, New Jersey, 08901, USA.

Published: April 2013

We determined the quantum requirements for growth (1/ϕμ ) and fatty acid (FA) biosynthesis (1/ϕFA ) in the marine diatom, Phaeodactylum tricornutum, grown in nutrient replete conditions with nitrate or ammonium as nitrogen sources, and under nitrogen limitation, achieved by transferring cells into nitrogen free medium or by inhibiting nitrate assimilation with tungstate. A treatment in which tungstate was supplemented to cells grown with ammonium was also included. In nutrient replete conditions, cells grew exponentially and possessed virtually identical 1/ϕμ of 40-44 mol photons · mol C(-1) . In parallel, 1/ϕFA varied between 380 and 409 mol photons · mol C(-1) in the presence of nitrate, but declined to 348 mol photons · mol C(-1) with ammonium and to 250 mol photons · mol C(-1) with ammonium plus tungstate, indicating an increase in the efficiency of FA biosynthesis relative to cells grown on nitrate of 8% and 35%, respectively. While the molecular mechanism for this effect remains poorly understood, the results unambiguously reveal that cells grown on ammonium are able to direct more reductant to lipids. This analysis suggests that when cells are grown with a reduced nitrogen source, fatty acid biosynthesis can effectively become a sink for excess absorbed light, compensating for the absence of energetically demanding nitrate assimilation reactions. Our data further suggest that optimal lipid production efficiency is achieved when cells are in exponential growth, when nitrate assimilation is inhibited, and ammonium is the sole nitrogen source.

Download full-text PDF

Source
http://dx.doi.org/10.1111/jpy.12046DOI Listing

Publication Analysis

Top Keywords

cells grown
16
photons · mol c-1
16
fatty acid
12
acid biosynthesis
12
nitrate assimilation
12
quantum requirements
8
requirements growth
8
marine diatom
8
diatom phaeodactylum
8
phaeodactylum tricornutum
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!