A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

New Insights into Electrochemical Lithiation/Delithiation Mechanism of α-MoO3 Nanobelt by in Situ Transmission Electron Microscopy. | LitMetric

New Insights into Electrochemical Lithiation/Delithiation Mechanism of α-MoO3 Nanobelt by in Situ Transmission Electron Microscopy.

ACS Appl Mater Interfaces

SEU-FEI Nano-Pico Center, Key Laboratory of MEMS of Ministry of Education, Southeast University, Nanjing 210096, China.

Published: April 2016

The α-MoO3 nanobelt has great potential for application as anode of lithium ion batteries (LIBs) because of its high capacity and unique one-dimensional layer structure. However, its fundmental electrochemical failure mechanism during first lithiation/delithiation process is still unclear. Here, we constructed an electrochemical setup within α-MoO3 nanobelt anode inside a transmission electron microscope to observe in situ the mircostructure evolution during cycles. Upon first lithiation, the α-MoO3 nanobelt converted into numerous Mo nanograins within the Li2O matrix, with an obvious size expansion. Interestingly, α-MoO3 nanobelt was found to undergo a two-stage delithiation process. Mo nanograins were first transformed into crystalline Li(1.66)Mo(0.66)O2 along with the disappearance of Li2O and size shrink, followed by the conversion to amorphous Li2MoO3. This irreversible phase conversion should be responsible for the large capacity loss in first cycle. In addition, a fully reversile phase conversion between crystalline Mo and amorphous Li2MoO3 was revealed accompanying the formation and disapperance of the Li2O layer during the subsequent cycles. Our experiments provide direct evidence to deeply understand the distinctive electrochemical lithiation/delithiation behaviors of α-MoO3 nanobelt, shedding light onto the development of α-MoO3 anode for LIBs.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.6b01671DOI Listing

Publication Analysis

Top Keywords

α-moo3 nanobelt
24
electrochemical lithiation/delithiation
8
transmission electron
8
amorphous li2moo3
8
phase conversion
8
α-moo3
7
nanobelt
6
insights electrochemical
4
lithiation/delithiation mechanism
4
mechanism α-moo3
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!