mTOR inhibition is beneficial in neurodegenerative disease models and its effects are often attributable to the modulation of autophagy and anti-apoptosis. Here, we report a neglected but important bioenergetic effect of mTOR inhibition in neurons. mTOR inhibition by rapamycin significantly preserves neuronal ATP levels, particularly when oxidative phosphorylation is impaired, such as in neurons treated with mitochondrial inhibitors, or in neurons derived from maternally inherited Leigh syndrome (MILS) patient iPS cells with ATP synthase deficiency. Rapamycin treatment significantly improves the resistance of MILS neurons to glutamate toxicity. Surprisingly, in mitochondrially defective neurons, but not neuroprogenitor cells, ribosomal S6 and S6 kinase phosphorylation increased over time, despite activation of AMPK, which is often linked to mTOR inhibition. A rapamycin-induced decrease in protein synthesis, a major energy-consuming process, may account for its ATP-saving effect. We propose that a mild reduction in protein synthesis may have the potential to treat mitochondria-related neurodegeneration.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4846388 | PMC |
http://dx.doi.org/10.7554/eLife.13378 | DOI Listing |
J Nanobiotechnology
January 2025
Department of Burns, Wound Repair and Reconstruction, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China.
Hypertrophic scar (HS) is a common fibroproliferative disorders with no fully effective treatments. The conversion of fibroblasts to myofibroblasts is known to play a critical role in HS formation, making it essential to identify molecules that promote myofibroblast dedifferentiation and to elucidate their underlying mechanisms. In this study, we used comparative transcriptomics and single-cell sequencing to identify key molecules and pathways that mediate fibrosis and myofibroblast transdifferentiation.
View Article and Find Full Text PDFCardiovasc Diabetol
January 2025
Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, No.2 Anzhen Road, Chaoyang District, 100029, Beijing, China.
Introduction: Bone marrow-derived mesenchymal stem cell-derived extracellular vesicles (BMSC-EVs) are widely used for therapeutic purposes in preclinical studies. However, their utility in treating diabetes-associated atherosclerosis remains largely unexplored. Here, we aimed to characterize BMSC-EV-mediated regulation of autophagy and macrophage polarization.
View Article and Find Full Text PDFCell Signal
January 2025
School of Basic Medicine, Jiamusi University, Jiamusi 154007, PR China. Electronic address:
The possible involvement of mTOR/p70S6K signaling in mediating Fibrillin-1 expression during the transition from acute kidney injury (AKI) to chronic kidney disease (CKD) after cardiac arrest and cardiopulmonary resuscitation (CA/CPR). A CA/CPR AKI model was established using male C57BL/6 mice aged 8-12 weeks. The expression of Fibrillin-1 and activation of the mTOR/p70S6K signaling pathway in kidney tissues were assessed at different time points.
View Article and Find Full Text PDFEcotoxicol Environ Saf
January 2025
College of Animal Science, Jilin University, Jilin Provincial Key Laboratory of Livestock and Poultry Feed and Feeding In Northeastern Frigid Area, Changchun 130062, China. Electronic address:
Excessive copper (Cu) has the potential risk to ecosystems and organism health, with its impact on dairy cow mammary glands being not well-defined. This study used a bovine mammary epithelial cell (MAC-T) model to explore how copper excess affects cellular oxidative stress, autophagy, ferroptosis, and protein and lipid biosynthesis in milk. Results showed the increased intracellular ROS, MDA, and CAT (P < 0.
View Article and Find Full Text PDFPLoS One
January 2025
Precision Laboratory of Vascular Medicine, Shanxi Cardiovascular Hospital Affiliated Shanxi Medical University, Taiyuan, PR China.
Background: Myocardial ischemia-reperfusion injury (MIRI) is an important complication in the treatment of heart failure, and its treatment has not made satisfactory progress. Nitroxyl (HNO) showed protective effects on the heart failure, however, the effect and underlying mechanism of HNO on MIRI remain largely unclear.
Methods: MIRI model in this study was established to induce H9C2 cell injury through hypoxia/reoxygenation (H/R) in vitro.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!