Objectives: To evaluate the utility of the application of a thyroid shield in intraoral radiography when using rectangular collimation.
Methods: Experimental data were obtained by measuring the absorbed dose at the position of the thyroid gland in a RANDO(®) (The Phantom Laboratory, Salem, NY) male phantom with a dosemeter. Four protocols were tested: round collimation and rectangular collimation, both with and without thyroid shield. Five exposure positions were deployed: upper incisor (Isup), upper canine (Csup), upper premolar (Psup), upper molar (Msup) and posterior bitewing (BW). Exposures were made with 70 kV and 7 mA and were repeated 10 times. The exposure times were as recommended for the exposure positions for the respective collimator type by the manufacturer for digital imaging. The data were statistically analyzed with a three-way ANOVA test. Significance was set at p < 0.01.
Results: The ANOVA test revealed that the differences between mean doses of all protocols and geometries were statistically significant, p < 0.001. For the Isup, thyroid dose levels were comparable with both collimators at a level indicating primary beam exposure. Thyroid shield reduced this dose with circa 75%. For the Csup position, round collimation also revealed primary beam exposure, and thyroid shield yield was 70%. In Csup with rectangular collimation, the thyroid dose was reduced with a factor 4 compared with round collimation and thyroid shield yielded an additional 42% dose reduction. The thyroid dose levels for the Csup, Psup, Msup and BW exposures were lower with rectangular collimation without thyroid shield than with round collimation with thyroid shield. With rectangular collimation, the thyroid shield in Psup, Msup and BW reduced the dose 10% or less, where dose levels were already low, implying no clinical significance.
Conclusions: For the exposures in the upper anterior region, thyroid shield results in an important dose reduction for the thyroid. For the other exposures, thyroid shield augments little to the reduction achieved by rectangular collimation. The use of thyroid shield is to be advised, when performing upper anterior radiography.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5084701 | PMC |
http://dx.doi.org/10.1259/dmfr.20150407 | DOI Listing |
Dent Traumatol
January 2025
Department of Endodontology, Maurice and Gabriela Goldschleger School of Dental Medicine, Tel Aviv University, Tel Aviv, Israel.
Background/aim: To explore transfer learning (TL) techniques for enhancing vertical root fracture (VRF) diagnosis accuracy and to assess the impact of artificial intelligence (AI) on image enhancement for VRF detection on both extracted teeth images and intraoral images taken from patients.
Materials And Methods: A dataset of 378 intraoral periapical radiographs comprising 195 teeth with fractures and 183 teeth without fractures serving as controls was included. DenseNet, ConvNext, Inception121, and MobileNetV2 were employed with model fusion.
Clin Oral Investig
January 2025
Department of Oral and Maxillofacial Surgery, Radboud University Medical Center, Geert Grooteplein 10, Nijmegen, 6525, GA, the Netherlands.
Objectives: To assess the effect of patient positioning and general anesthesia on the condylar position in orthognathic surgery.
Materials And Methods: This prospective study included patients undergoing orthognathic surgery between 2019 and 2020. Four weeks prior to surgery (T0) cone-beam computed tomography (CBCT) scans and intra-oral scans (IOS) were acquired in an upright position.
Dentomaxillofac Radiol
January 2025
Associate Professor, Division of Oral Diagnostic Sciences, School of Dentistry, Oregon Health & Science University, Portland, OR, USA.
Objectives: To compare a novel photon-counting sensor, two CBCT protocols and two CMOS sensors on the detection of gaps between a gutta-percha cone and root canal walls.
Methods: Twenty-five mandibular incisors were prepared to 45/.04 (size/taper) at working length.
Cureus
December 2024
Department of Oral Medicine and Radiology, Drs Sudha and Nageswara Rao Siddhartha Institute of Dental Sciences, Vijayawada, IND.
Background The thyroid gland is the most susceptible organ to radiation during the exposure of teeth because the thyroid area appears to be within the primary beam, and the dose levels are relatively high even after using collimation. This study aims to develop an eco-friendly thyroid shield by reusing lead foils from intra-oral periapical radiographic films and evaluate its effectiveness in intraoral radiography. Methods A total of 16 patients undergoing endodontic procedures who gave written consent to participate in the study were included and divided into four categories: anterior, canine, premolar, and molar.
View Article and Find Full Text PDFOral Radiol
January 2025
Department of Oral and Maxillofacial Radiology, The Nippon Dental University School of Life Dentistry, Tokyo, Japan.
Objective: The objective of this study was to evaluate the effectiveness of oblique radiographic projection using the intraoral paralleling technique in detecting various peri-implant bone defects.
Methods: Artificial mandibular models with appropriate radiopacity were created. An alveolar bone model without bone defects and models with 12 types of peri-implant bone defects (buccal, circumferential, and mixed types with different widths and depths) were created.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!