Applications of Deep Learning in Biomedicine.

Mol Pharm

Artificial Intelligence Research, Insilico Medicine, Inc, ETC, Johns Hopkins University, Baltimore, Maryland 21218, United States.

Published: May 2016

Increases in throughput and installed base of biomedical research equipment led to a massive accumulation of -omics data known to be highly variable, high-dimensional, and sourced from multiple often incompatible data platforms. While this data may be useful for biomarker identification and drug discovery, the bulk of it remains underutilized. Deep neural networks (DNNs) are efficient algorithms based on the use of compositional layers of neurons, with advantages well matched to the challenges -omics data presents. While achieving state-of-the-art results and even surpassing human accuracy in many challenging tasks, the adoption of deep learning in biomedicine has been comparatively slow. Here, we discuss key features of deep learning that may give this approach an edge over other machine learning methods. We then consider limitations and review a number of applications of deep learning in biomedical studies demonstrating proof of concept and practical utility.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.molpharmaceut.5b00982DOI Listing

Publication Analysis

Top Keywords

deep learning
16
applications deep
8
learning biomedicine
8
-omics data
8
learning
5
biomedicine increases
4
increases throughput
4
throughput installed
4
installed base
4
base biomedical
4

Similar Publications

The stomatal phenotype is a crucial microscopic characteristic of the leaf surface, and modulating the stomata of maize leaves can enhance photosynthetic carbon assimilation and water use efficiency, thereby playing a vital role in maize yield formation. The evolving imaging and image processing technologies offer effective tools for precise analysis of stomatal phenotypes. This study employed Jingnongke 728 and its parental inbred to capture stomatal images from various leaf positions and abaxial surfaces during key reproductive stages using rapid scanning electron microscopy.

View Article and Find Full Text PDF

With the rapid advancement of plant phenotyping research, understanding plant genetic information and growth trends has become crucial. Measuring seedling length is a key criterion for assessing seed viability, but traditional ruler-based methods are time-consuming and labor-intensive. To address these limitations, we propose an efficient deep learning approach to enhance plant seedling phenotyping analysis.

View Article and Find Full Text PDF

Hyperspectral images are rich in spectral and spatial information, providing a detailed and comprehensive description of objects, which makes hyperspectral image analysis technology essential in intelligent agriculture. With various corn seed varieties exhibiting significant internal structural differences, accurate classification is crucial for planting, monitoring, and consumption. However, due to the large volume and complex features of hyperspectral corn image data, existing methods often fall short in feature extraction and utilization, leading to low classification accuracy.

View Article and Find Full Text PDF

Physics-driven deep learning (PD-DL) methods have gained popularity for improved reconstruction of fast MRI scans. Though supervised learning has been used in early works, there has been a recent interest in unsupervised learning methods for training PD-DL. In this work, we take inspiration from statistical image processing and compressed sensing (CS), and propose a novel convex loss function as an alternative learning strategy.

View Article and Find Full Text PDF

AI-driven multi-omics integration for multi-scale predictive modeling of genotype-environment-phenotype relationships.

Comput Struct Biotechnol J

January 2025

Ph.D. Program in Computer Science, The Graduate Center, The City University of New York, New York, NY, USA.

Despite the wealth of single-cell multi-omics data, it remains challenging to predict the consequences of novel genetic and chemical perturbations in the human body. It requires knowledge of molecular interactions at all biological levels, encompassing disease models and humans. Current machine learning methods primarily establish statistical correlations between genotypes and phenotypes but struggle to identify physiologically significant causal factors, limiting their predictive power.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!