The {010} and {110} crystal facets of monoclinic bismuth vanadate (m-BiVO4) has been demonstrated to be the active reduction and oxidation sites, respectively. Here, we show using dual-faceted m-BiVO4 with distinctly different dominant exposed facets, one which is {010}-dominant and the other {110}-dominant, contrary to prediction, the former m-BiVO4 exhibits superior photooxidation activities. The population of photogenerated electrons and holes on the surface are revealed to be proportional to the respective surface areas of {010} and {110} exposed on m-BiVO4, as evidenced by steady-state photoluminescence (PL) measurements in the presence of charge scavengers. The better photoactivity of {010}-dominant m-BiVO4 is attributed to prompt electron transfer facilitated by the presence of more photogenerated electrons on the larger {010} surface. Additionally, the greater extent of electron trapping in {110}-dominant m-BiVO4 also deteriorates its photoactivity by inducing electron-hole pair recombination.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpclett.6b00428 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!