This is the first molecular characterization of a female XY patient with an Xp duplication due to an X;22 translocation. Array CGH detected a copy number gain of ∼36 Mb in the Xp22.33p21.1 region involving 150 genes. Clinical and molecular studies described in the literature have suggested DAX1 duplication as the major cause responsible for a sex reversal phenotype. Additionally, the interaction between genes and their possible role in clinical features are presented to support the discussion on genotype-phenotype correlation in cases of syndromic XY gonadal dysgenesis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1159/000444870 | DOI Listing |
Differences/disorders of sex development (DSDs) are a diverse group of congenital conditions that result in disagreement between an individual's sex chromosomes, gonads, and/or anatomical sex. The 46, XY DSD group is vast and includes various conditions caused by genetic variants, hormonal imbalances, or abnormal sensitivity to testicular hormones, leading to varying degrees of under-virilization. A 19-year-old phenotypically normal female from Kakamega, Kenya, presented with primary amenorrhea.
View Article and Find Full Text PDFJ Obstet Gynaecol Res
January 2025
Reproductive Sciences and Technology Research Center, Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
Objective: To evaluate the efficacy of a microfluidic culture system supplemented with follicular fluid meiosis-activating sterol (FF-MAS) on the maturation of immature oocytes in patients with polycystic ovarian syndrome (PCOS).
Methods: A total of 438 germinal vesicle oocytes from 163 PCOS patients were included. Oocytes were divided into five groups: (1) cultured in static drops without FF-MAS, (2) cultured in static drops with FF-MAS, (3) cultured in a microfluidic device without FF-MAS, (4) cultured in a microfluidic device with FF-MAS for the first 2 h, and (5) cultured in a microfluidic device with FF-MAS for 24 h.
J Ovarian Res
January 2025
The First Affiliated Hospital, Gynecology&Obstetrics and Reproductive Medical Center, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
Objective: Polycystic Ovary Syndrome (PCOS) is a prevalent endocrinopathy in reproductive-aged women, contributing to 75% of infertility cases due to ovulatory dysfunction. The condition poses significant health and psychological challenges, making the study of its pathogenesis and treatment a research priority. This study investigates the effects of Mogroside V (MV) on PCOS, focusing on its anti-inflammatory and anti-insulin resistance properties.
View Article and Find Full Text PDFAndrology
January 2025
Section of Endocrinology and Investigative Medicine, Imperial College London, London, UK.
The hypothalamic-pituitary-gonadal axis is regulated by the gonadotropin-releasing hormone pulse generator in the hypothalamus. This is comprised of neurons that secrete kisspeptin in a pulsatile manner to stimulate the release of GnRH, and, in turn, downstream gonadotropins from the pituitary gland, and subsequently sex steroids and gametogenesis from the gonads. Many reproductive disorders in both males and females are characterized by hypothalamic dysfunction, including functional disorders (such as age-related hypogonadism, obesity-related secondary hypogonadism, hyperprolactinemia, functional hypothalamic amenorrhea and polycystic ovary syndrome), structural pathologies (such as craniopharyngiomas or radiation or surgery-related hypothalamic dysfunction), and pubertal disorders (constitutional delay of growth and puberty and congenital hypogonadotropic hypogonadism).
View Article and Find Full Text PDFJ Ovarian Res
January 2025
Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
Polycystic ovary syndrome (PCOS) is the leading cause of anovulatory infertility among women of reproductive age, yet the range of effective treatment options remains limited. Our previous study revealed that reduced levels of nicotinamide adenine dinucleotide (NAD) in ovarian granulosa cells (GCs) of women with PCOS resulted in the accumulation of reactive oxygen species (ROS) and mitochondrial dysfunction. However, it is still uncertain whether increasing NAD levels in the ovaries could improve ovarian function in PCOS.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!