Brown algae (Phaeophyceae) are an important algal class that play a range of key ecological roles. They are often important components of rocky shore communities. A number of members of the Fucales and Ectocarpales have provided models for the study of multicellular evolution, reproductive biology and polarized development. Indeed the fucoid algae exhibit the unusual feature of inducible embryo polarization, allowing many classical studies of polarity induction. The potential of further studies of brown algae in these important areas has been increasingly hindered by the absence of tools for manipulation of gene expression that would facilitate further mechanistic analysis and gene function studies at a molecular level. The aim of this study was to establish a method that would allow the analysis of gene function through RNAi-mediated gene knockdown. We show that injection of double-stranded RNA (dsRNA) corresponding to an α-tubulin gene into Fucus serratus Linnaeus zygotes induces the loss of a large proportion of the microtubule cytoskeleton, leading to growth arrest and disruption of cell division. Injection of dsRNA targeting β-actin led to reduced rhizoid growth, enlarged cells and the failure to develop apical hair cells. The silencing effect on actin expression was maintained for 3 months. These results indicate that the Fucus embryo possesses a functional RNA interference system that can be exploited to investigate gene function during embryogenesis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/jpy.12096 | DOI Listing |
Introduction: Cytomegalovirus (CMV) is a DNA-containing virus that is widespread worldwide and is of great importance in infectious pathology of children and adults. The aim of this study is to evaluate the prevalence of CMV among children and immunocompromised patients in the Nizhny Novgorod region (central Russia) and to perform a phylogenetic analysis of the identified strains.
Materials And Methods: DNA samples of CMV detected in frequently ill children and adult recipients of solid organs were studied.
Introduction: Tat protein is a trans-activator of HIV-1 genome transcription, with additional functions including the ability to induce the chronic inflammatory process. Natural amino acid polymorphisms in Tat may affect its functional properties and the course of HIV infection. The aim of this work is to analyze the marks of Tat consensus sequences in non-A6 HIV-1 variants characteristic of the Russian Federation, as well as study natural polymorphisms in Tat CRF63_02A6 and subtype B variants circulating in Russia.
View Article and Find Full Text PDFAdv Exp Med Biol
January 2025
Centre for Diagnostic, Therapeutic and Investigative Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia.
Epigenetic regulation in hematopoietic stem cells (HSCs) research has emerged as a transformative molecular approach that enhances understanding of hematopoiesis and hematological disorders. This chapter investigates the intricate epigenetic mechanisms that control HSCs function, including deoxyribonucleic acid (DNA) methylation, histone modifications, and chromatin remodeling. It also explores the role of non-coding ribonucleic acid (RNAs) as epigenetic regulators, highlighting how changes in gene expression can occur without alterations to the DNA sequence.
View Article and Find Full Text PDFAdv Exp Med Biol
January 2025
Department of Biological Sciences, Middle East Technical University, Ankara, Türkiye.
Primary familial brain calcification (PFBC) is a rare, progressive central nervous system (CNS) disorder without a cure, and the current treatment methodologies primarily aim to relieve neurological and psychiatric symptoms of the patients. The disease is characterized by abnormal bilateral calcifications in the brain, however, our mechanistic understanding of the biology of the disease is still limited. Determining the roles of the specific cell types and molecular mechanisms involved in the pathophysiological processes of the disease is of great importance for the development of novel and effective treatment methodologies.
View Article and Find Full Text PDFRice (N Y)
January 2025
State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
Rice is highly sensitive to low temperatures, making cold stress a significant factor limiting its growth, especially during the bud bursting stage. To address this, an RIL population derived from a cross between cold-tolerant and cold-sensitive rice varieties was used to identify nine QTLs linked to cold tolerance under temperatures of 4 ℃, 5 °C, and 6 ℃ using a high-density genetic map. One candidate gene, LOC_Os07g44410, was identified through gene function annotation, haplotype analysis, and qRT-PCR, with two main haplotypes (Hap1 and Hap2) showing distinct phenotypic differences.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!