Dinoflagellate bioluminescence serves as a whole-cell reporter of mechanical stress, which activates a signaling pathway that appears to involve the opening of voltage-sensitive ion channels and release of calcium from intracellular stores. However, little else is known about the initial signaling events that facilitate the transduction of mechanical stimuli. In the present study using the red tide dinoflagellate Lingulodinium polyedrum (Stein) Dodge, two forms of dinoflagellate bioluminescence, mechanically stimulated and spontaneous flashes, were used as reporter systems to pharmacological treatments that targeted various predicted signaling events at the plasma membrane level of the signaling pathway. Pretreatment with 200 μM Gadolinium III (Gd(3+) ), a nonspecific blocker of stretch-activated and some voltage-gated ion channels, resulted in strong inhibition of both forms of bioluminescence. Pretreatment with 50 μM nifedipine, an inhibitor of L-type voltage-gated Ca(2+) channels that inhibits mechanically stimulated bioluminescence, did not inhibit spontaneous bioluminescence. Treatment with 1 mM benzyl alcohol, a membrane fluidizer, was very effective in stimulating bioluminescence. Benzyl alcohol-stimulated bioluminescence was inhibited by Gd(3+) but not by nifedipine, suggesting that its role is through stretch activation via a change in plasma membrane fluidity. These results are consistent with the presence of stretch-activated and voltage-gated ion channels in the bioluminescence mechanotransduction signaling pathway, with spontaneous flashing associated with a stretch-activated component at the plasma membrane.

Download full-text PDF

Source
http://dx.doi.org/10.1111/jpy.12084DOI Listing

Publication Analysis

Top Keywords

signaling pathway
16
ion channels
16
plasma membrane
12
bioluminescence
9
dinoflagellate lingulodinium
8
lingulodinium polyedrum
8
dinoflagellate bioluminescence
8
signaling events
8
mechanically stimulated
8
stretch-activated voltage-gated
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!