Understanding responses of marine algae to changing ocean temperatures requires knowledge of the impacts of elevated temperatures and the likelihood of adaptation to thermal stress. The potential for rapid evolution of thermal tolerance is dependent on the levels of heritable genetic variation in response to thermal stress within a population. Here, we use a quantitative genetic breeding design to establish whether there is a heritable variation in thermal sensitivity in two populations of a habitat-forming intertidal macroalga, Hormosira banksii (Turner) Descaisne. Gametes from multiple parents were mixed and growth and photosynthetic performance were measured in the resulting embryos, which were incubated under control and elevated temperature (20°C and 28°C). Embryo growth was reduced at 28°C, but significant interactions between male genotype and temperature in one population indicated the presence of genetic variation in thermal sensitivity. Selection for more tolerant genotypes thus has the ability to result in the evolution of increased thermal tolerance. Furthermore, genetic correlations between embryos grown in the two temperatures were positive, indicating that those genotypes that performed well in elevated temperature also performed well in control temperature. Chlorophyll a fluorescence measurements showed a marked decrease in maximum quantum yield of photosystem II (PSII) under elevated temperature. There was an increase in the proportion of energy directed to photoinhibition (nonregulated nonphotochemical quenching) and a concomitant decrease in energy used to drive photochemistry and xanthophyll cycling (regulated nonphotochemical quenching). However, PSII performance between genotypes was similar, suggesting that thermal sensitivity is related to processes other than photosynthesis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/jpy.12067 | DOI Listing |
Polymers (Basel)
January 2025
Department of Physics, Washington State University, Pullman, WA 99163, USA.
This work aims to determine the mechanism of the photomechanical response of poly(Methyl methacrylate) polymer doped with the photo-isomerizable dye Disperse Red 1 using the non-isomerizable dye Disperse Orange 11 as a control to isolate photoisomerization. Samples are free-standing thin films with thickness that is small compared with the optical skin depth to assure uniform illumination and photomechanical response throughout their volume, which differentiates these studies from most others. Polarization-dependent measurements of the photomechanical stress response are used to deconvolute the contributions of angular hole burning, molecular reorientation and photothermal heating.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
School of Metallurgy, Northeastern University, Shenyang 110819, China.
The constitutive model was commonly used to describe the flow stress of materials under specific strain, strain rate, and temperature conditions. In order to study the thermal-mechanical behavior of DH460 continuous casting steel during the solidification end heavy reduction (HR) process accurately. The high-temperature compression experiment was carried out, and phenomenological constitutive models were established based on the experimental results.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
State Key Laboratory of High-Performance Precision Manufacturing, Dalian University of Technology, Dalian 116024, China.
Laser cladding technology is an effective method for producing wear-resistant coatings on damaged substrates, improving both wear and corrosion resistance, which extends the service life of components. However, the fabrication of hard and brittle materials is highly susceptible to the problem of cracking. Using gradient transition layers is an effective strategy to mitigate the challenge of achieving crack-free laser-melted wear-resistant coatings.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Department of Materials Science and Engineering, National Taiwan University, Taipei 10617, Taiwan.
This study investigates the grain morphology, microstructure, magnetic properties and shape memory properties of an FeNiCoAlTaB (at%) high-entropy alloy (HEA) cold-rolled to 98%. The EBSD results show that the texture intensities of the samples annealed at 1300 °C for 0.5 or 1 h are 2.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Department of Industrial Engineering, University of Salerno, 84084 Fisciano, SA, Italy.
This paper presents a comprehensive numerical investigation to simulate heat transfer and residual stress formation of Ti-6Al-4V alloy during the Laser Powder Bed Fusion process, using a finite element model (FEM). The FEM was developed with a focus on the effects of key process parameters, including laser scanning velocity, laser power, hatch space, and scanning pattern in single-layer scanning. The model was validated against experimental data, demonstrating good agreement in terms of temperature profiles and melt pool dimensions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!