VGSC: A Web-Based Vector Graph Toolkit of Genome Synteny and Collinearity.

Biomed Res Int

The Southern Modern Forestry Collaborative Innovation Center, Nanjing Forestry University, Nanjing, Jiangsu 210037, China; College of Information Science and Technology, Nanjing Forestry University, Nanjing, Jiangsu 210037, China.

Published: December 2016

Background: In order to understand the colocalization of genetic loci amongst species, synteny and collinearity analysis is a frequent task in comparative genomics research. However many analysis software packages are not effective in visualizing results. Problems include lack of graphic visualization, simple representation, or inextensible format of outputs. Moreover, higher throughput sequencing technology requires higher resolution image output.

Implementation: To fill this gap, this paper publishes VGSC, the Vector Graph toolkit of genome Synteny and Collinearity, and its online service, to visualize the synteny and collinearity in the common graphical format, including both raster (JPEG, Bitmap, and PNG) and vector graphic (SVG, EPS, and PDF).

Result: Users can upload sequence alignments from blast and collinearity relationship from the synteny analysis tools. The website can generate the vector or raster graphical results automatically. We also provide a java-based bytecode binary to enable the command-line execution.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4783527PMC
http://dx.doi.org/10.1155/2016/7823429DOI Listing

Publication Analysis

Top Keywords

synteny collinearity
16
vector graph
8
graph toolkit
8
toolkit genome
8
genome synteny
8
synteny
5
collinearity
5
vgsc web-based
4
vector
4
web-based vector
4

Similar Publications

Background: Zinc finger homeodomain (ZF-HD) belongs to the plant-specific transcription factor (TF) family and is widely involved in plant growth, development and stress responses. Despite their importance, a comprehensive identification and analysis of ZF-HD genes in the soybean (Glycine max) genome and their possible roles under abiotic stress remain unexplored.

Results: In this study, 51 ZF-HD genes were identified in the soybean genome that were unevenly distributed on 17 chromosomes.

View Article and Find Full Text PDF

Genome-Wide Identification and Functional Characterization of Gene Family Reveal Its Involvement in Response to Stress in Cotton.

Int J Mol Sci

January 2025

Institute of Cotton, Hebei Academy of Agriculture and Forestry Sciences/Key Laboratory of Cotton Biology and Genetic Breeding in Huanghuaihai Semiarid Area, Ministry of Agriculture and Rural Affairs, Shijiazhuang 050000, China.

SKP1 constitutes the Skp1-Cullin-F-box ubiquitin E3 ligase (SCF), which plays a role in plant growth and development and biotic and abiotic stress in ubiquitination. However, the response of the gene family to abiotic and biotic stresses in cotton has not been well characterized. In this study, a total of 72 genes with the conserved domain of SKP1 were identified in four Gossypium species.

View Article and Find Full Text PDF

Genome-wide identification, characterization, and functional analysis of the CHX, SOS, and RLK genes in Solanum lycopersicum under salt stress.

Sci Rep

January 2025

Department of Plant Genetic Transformation, Agricultural Genetic Engineering Research Institute (AGERI), Agricultural Research Center (ARC), Cairo, Egypt.

The cation/proton exchanger (CHX), salt overly sensitive (SOS), and receptor-like kinase (RLK) genes play significant roles in the response to salt stress in plants. This study is the first to identify the SOS gene in Solanum lycopersicum (tomato) through genome-wide analysis under salt stress conditions. Quantitative reverse transcription PCR (qRT-PCR) results indicated that the expression levels of CHX, SOS, and RLK genes were upregulated, with fold changes of 1.

View Article and Find Full Text PDF

Introduction: Useful germplasm for citrus breeding includes all sexually compatible species of the former genera , and , now merged in the single genus. An improved knowledge on the synteny/collinearity between the genome of these different species, and on their recombination landscapes, is essential to optimize interspecific breeding schemes.

Method: We have performed a large comparative genetic mapping study including several main clades of the genus.

View Article and Find Full Text PDF

Background: Elucidating the intricacies of the sugarcane genome is essential for breeding superior cultivars. This economically important crop originates from hybridizations of highly polyploid Saccharum species. However, the large size (10 Gb), high degree of polyploidy, and aneuploidy of the sugarcane genome pose significant challenges to complete genome sequencing, assembly, and annotation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!