Many compounds are used for pest control during the production and storage of rice, making it necessary to employ multiclass methods for pesticide residues determination. For this purpose, QuEChERS-based methods are very efficient, fast and accurate, and improvements in the clean-up step are important, especially for complex matrices, like cereals. In this work, different sorbents such as chitosan, florisil(®) , alumina, diatomaceous earth, graphitized carbon black, besides the commonly used primary secondary amine and octadecylsilane, were evaluated for dispersive solid-phase extraction clean-up in acetate-buffered QuEChERS method for the determination of residues of 20 representative pesticides and one metabolite in rice by liquid chromatography coupled to tandem mass spectrometry. The sorbent C18 presented the best results, however, chitosan showed similar results, and the best performance among the unconventional sorbents evaluated. The method limit of quantification, attending accuracy (70-120% recovery) and precision (RSD ≤20%) criteria, ranged from 5 to 20 μg/kg. Results showed that chitosan is an effective alternative to reduce analysis costs, maintaining the method reliability and accuracy.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jssc.201501204DOI Listing

Publication Analysis

Top Keywords

dispersive solid-phase
8
solid-phase extraction
8
extraction clean-up
8
quechers method
8
method determination
8
pesticide residues
8
rice liquid
8
liquid chromatography
8
tandem mass
8
mass spectrometry
8

Similar Publications

Analysis of multi-class unregulated organic compounds in soil and biosolids using LC-MS/MS.

Environ Pollut

January 2025

Department of Agronomy, Purdue University, West Lafayette, Indiana 47907, USA; Department of Environmental & Ecological Engineering, Purdue University, West Lafayette, Indiana 47907, USA; Ecological Sciences & Engineering Interdisciplinary Graduate Program, Purdue University, West Lafayette, Indiana 47907, USA.

Numerous unregulated organic compounds (UOCs) including pharmaceuticals, opioids, and personal care products (PCPs) end up in wastewater. UOC presence in biosolids (a wastewater treatment byproduct), which are applied to soil for different reasons raises environmental and health risk concerns. In this study, two multi-class extraction methods were developed and validated to target 111 UOCs from 8 different major families simultaneously in biosolids and biosolids-impacted soil.

View Article and Find Full Text PDF

In the present study, dispersive solid phase extraction - hydride generation integrated with micro-sampling gas-liquid separator - flame atomic absorption spectrometry was proposed to determine lead in lake water samples taken in the Horseshoe Island, Antarctica. In scope of this study, microwave assisted NiFeO nanoparticles were synthesized, and the characterization of nanoparticles were carried out by FT-IR, XRD and SEM. All influential parameters of dispersive solid phase extraction and hydride generation were optimized to enhance signal intensity belonging to the analyte.

View Article and Find Full Text PDF

MXenes are a large family of two-dimensional transition metal carbides, nitrides, and carbonitrides. While MXenes have great potential for applications in analytical chemistry, most of the studies in this field are focused on TiCT, the most popular MXene material. For example, several studies employed TiCT as an adsorbent for the trace detection of toxic analytes, but there is limited knowledge on the utility of other MXene materials for this application.

View Article and Find Full Text PDF

The continuous development and application of pesticides in agriculture require robust multiresidue detection methods to guarantee food safety. This study introduces a novel method for multiresidue determination of pesticides in eggplants using the QuEChERS procedure, incorporating a clean-up step using carbon nanotubes stabilized in chitosan sponge (CNT-CS) and ultra-high performance liquid chromatography with tandem mass spectrometry (UHPLC-MS/MS) for analysis. Upon identifying the optimal extraction conditions, various sorbents were assessed for their efficacy in the dispersive solid-phase extraction (d-SPE).

View Article and Find Full Text PDF

Energized dispersive guided extraction (EDGE): a promising tool for analytical chemistry applications.

Anal Methods

January 2025

Rede Nordeste de Biotecnologia, Universidade Federal de Sergipe, São Cristóvão, SE 49100-000, Brazil.

Analytical chemistry demands precise sample preparation methods to ensure accurate qualitative and quantitative determinations, especially those capable of clean-up and preconcentration of target analytes. Extraction plays a crucial role in enhancing the selectivity and sensitivity of analytical procedures. Thus, Energized Dispersive Guided Extraction (EDGE) has emerged as an innovative alternative to traditional methods, such as Soxhlet, maceration, and percolation, as well as modern techniques like Accelerated Solvent Extraction (ASE), Supercritical Fluid Extraction (SFE), and Microwave or Ultrasound Assisted Extraction (MAE and UAE).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!