Selenium-gold interaction plays an important role in crystal materials, molecular self-assembly, and pharmacochemistry involving gold. In this paper, we unveiled the mechanism and nature of selenium-gold interaction by studying complexes F2CSe⋯AuY (Y = CN, F, Cl, Br, OH, and CH3). The results showed that the formation of selenium-gold interaction is mainly attributed to the charge transfer from the lone pair of Se atom to the Au-Y anti-bonding orbital. Energy decomposition analysis indicated that the polarization energy is nearly equivalent to or exceeds the electrostatic term in the selenium-gold interaction. Interestingly, the chalcogen-gold interaction becomes stronger with the increase of chalcogen atomic mass in F2CX⋯AuCN (X = O, S, Se, and Te). The cyclic ternary complexes are formed with the introduction of NH3 into F2CSe⋯AuY, in which selenium-gold interaction is weakened and selenium-nitrogen interaction is strengthened due to the synergistic effects.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.4944088DOI Listing

Publication Analysis

Top Keywords

selenium-gold interaction
24
interaction
8
f2cse⋯auy ch3
8
synergistic effects
8
selenium-gold
5
origin selenium-gold
4
interaction f2cse⋯auy
4
ch3 synergistic
4
effects selenium-gold
4
interaction plays
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!