Background: Extended Spectrum β-lactamases (ESBLs) are emerging as common nosocomial pathogens and important cause of mortality and morbidity, if not treated properly. The need of the hour is to find effective treatment options for dealing with ESBL producing organisms. This study was aimed to evaluate in vitro susceptibility pattern of extended spectrum β-lactamase producers against tetracyclines.

Methods: This descriptive cross-sectional study was carried out in the department of Microbiology, Army Medical College, Rawalpindi, National University of Sciences and Technology over a period of 6 months. Seventy eight non-duplicate isolates were included in the study. ESBL detection was done using Jarlier et al method. In vitro susceptibility of tetracyclines like tetracycline, doxycycline, minocycline and tigecycline was then tested using Modified Kirby Bauer disc diffusion method. The zones of inhibition were measured after completion of incubation period and interpreted as per CLSI and FDA guidelines.

Results: Approximately 56.4% of the isolates were Escherichia coli, 28.2% were Klebsiella pneumoniae, 10.26% were Enterobacter species, and 2.6% were each Klebsiella oxytoca and Acinetobacter species. ESBLs were found to be most sensitive to tigecycline, intermediate in susceptibility to minocycline while least sensitive to doxycycline and tetracycline.

Conclusion: Among tetracyclines, tigecycline has best in vitro susceptibility against ESBL producing Gram negative rods.

Download full-text PDF

Source

Publication Analysis

Top Keywords

vitro susceptibility
16
extended spectrum
12
susceptibility pattern
8
pattern extended
8
spectrum β-lactamase
8
producing gram
8
gram negative
8
esbl producing
8
vitro
4
β-lactamase producing
4

Similar Publications

Plasmodium malariae parasites are widely observed across the tropics and sub-tropics. This slow-growing species, known to maintain chronic asymptomatic infections, has been associated with reduced antimalarial susceptibility. We analyse 251 P.

View Article and Find Full Text PDF

In vitro susceptibility of 147 international clinical Mycobacterium abscessus isolates to epetraborole and comparators by broth microdilution.

J Antimicrob Chemother

December 2024

Division of Mycobacterial and Respiratory Infections, Department of Medicine, National Jewish Health, Denver, CO, USA.

Background: Mycobacterium abscessus is a highly drug-resistant non-tuberculous mycobacterium (NTM) for which treatment is limited by the lack of active oral antimycobacterials and frequent adverse reactions. Epetraborole is a novel oral, boron-containing antimicrobial that inhibits bacterial leucyl-tRNA synthetase, an essential enzyme in protein synthesis, and has been shown to have anti-M. abscessus activity in preclinical studies.

View Article and Find Full Text PDF

Background And Objectives: The incidence of multidrug-resistant, Gram-negative organisms, isolated as the etiological agents of infections is ascending. The advent of novel antibiotics poses significant challenges, necessitating the optimization and utilization of extant antimicrobial agents. Cefoperazone, a third-generation cephalosporin and β-lactam antimicrobial, when combined with sulbactam, an irreversible β-lactamase inhibitor, mitigates the vulnerability of cefoperazone to β-lactamase-producing organisms.

View Article and Find Full Text PDF

The present experimental study aimed to assess the wound healing and anti-inflammatory effects of green synthesized copper nanoparticles (CuNPs) by the methanol extract of (Boiss), as a plant with various pharmacological effects, such as anti-inflammatory and antimicrobial effects, in traditional and modern medicine. The precipitation approach was used for the green synthesis of CuNPs by mixing the methanol and copper sulfate solution. Cell viability and fibroblast proliferation assay were performed by MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide) assay.

View Article and Find Full Text PDF

Efficacy of high doses of intravenous fosfomycin for treatment of urinary tract infection caused by KPC carbapenemase-producing Klebsiella pneumoniae. An observational study.

J Glob Antimicrob Resist

December 2024

Maimonides Biomedical Research Institute of Córdoba (IMIBIC); Microbiology Unit, Reina Sofia University Hospital; Córdoba, Spain; Department of Agricultural Chemistry, Soil Science and Microbiology, University of Cordoba, Cordoba, Spain; CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain.

Objectives: To evaluate the efficacy of high-dose intravenous fosfomycin for the treatment of urinary tract infections (UTI) caused by KPC carbapenemase-producing Klebsiella pneumoniae (KPC-Kp). A secondary objective was to evaluate the impact of the results of fosfomycin susceptibility testing on prognosis.

Methods: This is an observational and retrospective study.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!