Endothelial colony-forming cells (ECFCs) isolated from umbilical cord blood (CBECFCs) are highly proliferative and form blood vessels in vivo. The purpose of this investigation was to isolate and characterize a population of resident ECFCs from the chorionic villi of term human placenta and provide a comparative analysis of their proliferative and vasculogenic potential with CBECFCs. ECFCs were isolated from umbilical cord blood and chorionic villi from placentas obtained by caesarean deliveries. Placental ECFCs (PECFCs) expressed CD144, CD31, CD105, and KDR and were negative for CD45 and CD34, consistent with other ECFC phenotypes. PECFCs were capable of 28.6 ± 6.0 population doublings before reaching senescence (vs. 47.4 ± 3.2 for CBECFCs, p < 0.05, n = 4). In single cell assays, 46.5 ± 1.2% underwent at least one division (vs. 51.0 ± 1.8% of CBECFCs, p = 0.07, n = 6), and of those dividing PECFCs, 71.8 ± 0.9% gave rise to colonies of >500 cells (highly proliferative potential clones) over 14 days (vs. 69.4 ± 0.7% of CBECFCs, p = 0.07, n = 9). PECFCs formed 5.2 ± 0.8 vessels/mm(2) in collagen/fibronectin plugs implanted into non-obese diabetic/severe combined immunodeficient (NOD/SCID) mice, whereas CBECFCs formed only 1.7 ± 1.0 vessels/mm(2) (p < 0.05, n = 4). This study demonstrates that circulating CBECFCs and resident PECFCs are identical phenotypically and contain equivalent quantities of high proliferative potential clones. However, PECFCs formed significantly more blood vessels in vivo than CBECFCs, indicating that differences in vasculogenic potential between circulating and resident ECFCs exist.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4776045PMC
http://dx.doi.org/10.3727/215517911X617888DOI Listing

Publication Analysis

Top Keywords

umbilical cord
12
cord blood
12
endothelial progenitor
8
progenitor cells
8
human placenta
8
vasculogenic potential
8
ecfcs isolated
8
isolated umbilical
8
highly proliferative
8
chorionic villi
8

Similar Publications

To investigate the correlation between fetoplacental circulation and maternal left ventricular myocardial work (MW) parameters in patients with preeclampsia (PE) and the prediction of fetal hypoxia. Seventy-eight PE patients (PE group) were assigned to intrauterine-hypoxia (27) and non-intrauterine-hypoxia (51) groups, and 45 healthy pregnant women were controls. The receiver operating characteristic (ROC) curve evaluated the diagnostic efficacy of each parameter for fetal intrauterine hypoxia.

View Article and Find Full Text PDF

Mesenchymal stem cells (MSCs) have been widely used in the treatment of various inflammatory diseases. The inadequate understanding of MSCs and their heterogeneity can impact the immune environment, which may be the cause of the good outcomes of MSCs-based therapy that cannot always be achieved. Recently, stem cells from human exfoliated deciduous teeth (SHED) showed great potential in inflammatory and autoimmune diseases due to their immature properties compared with MSCs.

View Article and Find Full Text PDF

Exosomes derived from umbilical cord mesenchymal stem cells promote healing of complex perianal fistulas in rats.

Stem Cell Res Ther

December 2024

National Colorectal Disease CenterNanjing Hospital of Chinese Medicine, Affiliated to Nanjing University of Chinese Medicine, Nanjing, 210022, Jiangsu, People's Republic of China.

Background: Complex perianal fistulas, challenging to treat and prone to recurrence, often require surgical intervention that may cause fecal incontinence and lower quality of life due to large surgical wounds and potential sphincter damage. Human umbilical cord-derived MSCs (hUC-MSCs) and their exosomes (hUCMSCs-Exo) may promote wound healing.

Methods: This study assessed the efficacy, mechanisms, and safety of these exosomes in treating complex perianal fistulas in SD rats.

View Article and Find Full Text PDF

Background: Promoting muscle regeneration through stem cell therapy has potential risks. We investigated the effect of umbilical cord mesenchymal stem cells (UMSCs) Exosomes (Exo) Follistatin on muscle regeneration.

Methods: The Exo was derived from UMSCs cells and was utilized to affect the mice muscle injury model and C2C12 cells myotubes atrophy model.

View Article and Find Full Text PDF

Introduction: ICAM-1 is an adhesion molecule expressed on the endothelial cells and is involved in regulating leukocyte recruitment to the site of inflammation. Elevated ICAM-1 mRNA expression was found in the serum of mothers with chorioamnionitis. This study aimed to determine the expression of ICAM-1 in the placenta and umbilical cord of pregnancy with chorioamnionitis, and its association with adverse neonatal outcome.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!