Background And Aims: The depletion of the ozone layer allows overexposure of the skin to UV radiation, which is prolonged due to the increasing life expectancy, together with inappropriate life habits contribute to the increasing incidence of cutaneous malignancies. Plant extracts with antioxidant capacities are frequently employed as a means to protect skin against ultraviolet (UV) radiations, thus preventing skin cancers. In the present study we assessed a red grape seed extract (GSE) potential capacities to reduce ultraviolet B (UVB) radiation-induced reactive oxygen species (ROS) and subsequent apoptosis in a human keratinocytes cell line (HaCaT). We identified molecules and pathways modulated by the GSE through which this may exert its photoprotective effect.
Methods: The GSE was standardized according to its polyphenolic content and the most important biologically active compounds, such as epigallocatechin and epicatechin, catechin hydrate, procyanidin B and gallic acid were evidenced by high-performance liquid chromatography. According to the plant extract cytotoxicity on the HaCaT cell line, two concentrations were selected for testing from the non-toxic range: GSE1 (37.5 μgEqGA/ml) and GSE2 (75 μgEqGA/ml). The level of ROS was evaluated with CM-H2DCFDA assay, while apoptosis, Bax-α and NF-kβ p65 proteins with ELISA and confirmed by western-blot.
Results: Both concentrations of the extract decreased the level of ROS in UVB-irradiated keratinocytes (p<0.001), whereas apoptosis and Bax-α pro-apoptotic protein were only reduced by the higher concentration (GSE2). The NF-kB p65 protein level registered increasing values in time after UVB exposure of the cells, while the tested plant extract re-established its level when its smaller concentration was used (GSE1).
Conclusion: These results encourage further studies on this extract in order to identify other molecules and pathways through which this extract might exert its beneficial effects and also recommend its use as a potential photoprotective agent.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4777472 | PMC |
http://dx.doi.org/10.15386/cjmed-508 | DOI Listing |
J Clin Immunol
January 2025
Population Health Sciences Institute, Newcastle University, Newcastle-Upon-Tyne, UK.
Receptor Interacting Serine/Threonine Kinase 1 (RIPK1) is widely expressed and integral to inflammatory and cell death responses. Autosomal recessive RIPK1-deficiency, due to biallelic loss of function mutations in RIPK1, is a rare inborn error of immunity (IEI) resulting in uncontrolled necroptosis, apoptosis and inflammation. Although hematopoietic stem cell transplantation (HSCT) has been suggested as a potential curative therapy, the extent to which disease may be driven by extra-hematopoietic effects of RIPK1-deficiency, which are non-amenable to HSCT, is not clear.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Surgery, Yonsei University Wonju College of Medicine, Wonju, Korea.
Bcl-2, a key regulator of cellular apoptosis, is typically linked to adverse prognosis in solid tumors due to its inhibition of apoptotic cell death and promotion of cellular proliferation, leading to tumor progression. However, studies on Bcl-2 in breast cancer have shown inconsistent results, with some indicating favorable outcomes. This study aims to determine the subtype-specific role of Bcl-2 in breast cancer.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China.
Glioblastoma (GBM) is the most common intracranial malignancy, but current treatment options are limited. Super-enhancers (SEs) have been found to drive the expression of key oncogenes in GBM. However, the role of SE-associated long non-coding RNAs (lncRNAs) in GBM remains poorly understood.
View Article and Find Full Text PDFCell Death Dis
January 2025
State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Department of Pulmonary and Critical Care Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510120, China.
Immune checkpoint inhibitors (ICIs) have significant therapeutic effects but can also cause fatal lung injury. However, the lack of mouse animal models of ICI-related lung injury (ICI-LI) has limited the in-depth exploration of its pathogenesis. In clinical practice, underlying lung diseases increase the risk of lung injury.
View Article and Find Full Text PDFJ Immunother Cancer
January 2025
Qingdao Key Laboratory of Materials for Tissue Repair and Rehabilitation, School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, Shandong, People's Republic of China
Background: Tumor cells can drive the senescence of effector T cells by unbalancing their lipid metabolism, thereby limiting adoptive T cell therapy and contributing to tumor immune evasion. Our objective is to provide a feasible strategy for enhancing T cell treatment efficacy against solid tumors.
Methods: In this study, liposomal arachidonyl trifluoromethyl ketone (ATK) was anchored onto the adoptive T cell surface via bioorthogonal reactions, aiming to specifically inhibit the group IVA cytosolic phospholipase Aα (cPLAα), a key enzyme facilitating phospholipid metabolism and senescent state of T cells.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!