GHR/PRLR Heteromultimer Is Composed of GHR Homodimers and PRLR Homodimers.

Mol Endocrinol

Department of Medicine (Y.L., Y.Z., J.J., S.J.F.), Division of Endocrinology, Diabetes, and Metabolism; Department of Radiology (K.R.Z.); and Department of Cell, Developmental, and Integrative Biology (S.J.F.), University of Alabama at Birmingham, Birmingham, Alabama 35294; Cancer Science Institute of Singapore and Department of Pharmacology (P.E.L.), National University of Singapore, Singapore 119077; Department of Radiology (R.P.), Stanford University School of Medicine, Palo Alto, California 94304; Department of Biological Sciences (J.F.L., W.Y.C.), Clemson University, Clemson, South Carolina 29634; and Endocrinology Section (S.J.F.), Medical Service, Veterans Affairs Medical Center, Birmingham, Alabama 35233.

Published: May 2016

GH receptor (GHR) and prolactin (PRL) receptor (PRLR) are homologous transmembrane cytokine receptors. Each prehomodimerizes and ligand binding activates Janus Kinase 2 (JAK2)-signal transducer and activator of transcription (STAT) signaling pathways by inducing conformational changes within receptor homodimers. In humans, GHR is activated by GH, whereas PRLR is activated by both GH and PRL. We previously devised a split luciferase complementation assay, in which 1 receptor is fused to an N-terminal luciferase (Nluc) fragment, and the other receptor is fused to a C-terminal luciferase (Cluc) fragment. When receptors approximate, luciferase activity (complementation) results. Using this assay, we reported ligand-independent GHR-GHR complementation and GH-induced complementation changes characterized by acute augmentation above basal signal, consistent with induction of conformational changes that bring GHR cytoplasmic tails closer. We also demonstrated association between GHR and PRLR in T47D human breast cancer cells by coimmunoprecipitation, suggesting that, in addition to forming homodimers, these receptors form hetero-assemblages with functional consequences. We now extend these analyses to examine basal and ligand-induced complementation of coexpressed PRLR-Nluc and PRLR-Cluc chimeras and coexpressed GHR-Nluc and PRLR-Cluc chimeras. We find that PRLR-PRLR and GHR-PRLR form specifically interacting ligand-independent assemblages and that either GH or PRL augments PRLR-PRLR complementation, much like the GH-induced changes in GHR-GHR dimers. However, in contrast to the complementation patterns for GHR-GHR or PRLR-PRLR homomers, both GH and PRL caused decline in luciferase activity for GHR-PRLR heteromers. These and other data suggest that GHR and PRLR associate in complexes comprised of GHR-GHR/PRLR-PRLR heteromers consisting of GHR homodimers and PRLR homodimers, rather than GHR-PRLR heterodimers.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4853563PMC
http://dx.doi.org/10.1210/me.2015-1319DOI Listing

Publication Analysis

Top Keywords

ghr homodimers
8
homodimers prlr
8
prlr homodimers
8
conformational changes
8
complementation assay
8
receptor fused
8
luciferase activity
8
complementation gh-induced
8
ghr prlr
8
prlr-cluc chimeras
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!