Magnetic composite sorbents based on saponite clays with different content of magnetite (2-7 wt%.) were synthesized. The samples were analyzed by X-ray diffraction methods, and it was found that the Fe3O4 in composites is in the nanorange. It has been shown that the magnetic nanocomposites have more developed microporosity and mesoporosity compared to saponite clay. The sorption properties of magnetic nanocomposite sorbents were determined, and the results evidenced that their efficiency is significantly higher than the individual phases of the composite. It was shown that all waste composite magnetic sorbents are successfully removed from the water environment by magnetic separation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4803713 | PMC |
http://dx.doi.org/10.1186/s11671-016-1364-2 | DOI Listing |
Sci Rep
January 2025
Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran.
Heliyon
December 2024
Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran.
A magnetic nano-composite coagulant has been designed, originally applied in a specific industrial waste-water treatment, and statistically investigated using Central Composite Design (CCD). The generated polynomial models were utilized to achieve a comprehensive understanding of the impact of each ingredient of PolyAluminum Chloride (PAC), PolyAcrylAmide (PAM), and Iron (III) oxide magnetic nano particles (MNP) regarding optimum limits and conditions. The concentration of each of those components has been considered as the main effective factors, which are found to be significantly correlated, affecting the Total Dissolved Solid (TDS) removal (%), the Total Suspended Solid (TSS) removal (%), and the Turbidity Reduction Rate (TRR) NTU/min.
View Article and Find Full Text PDFFood Chem
December 2024
Department of Chemistry, Faculty of Sciences, Erciyes University, Kayseri, Turkiye; Technology Research and Application Center (TAUM), Erciyes University, Kayseri, Turkiye; Turkish Academy of Sciences (TUBA), Cankaya, Ankara, Turkiye; Khazar University Nano BioAnalytical Chemistry Center (NBAC), Mahsati Str 41, AZ-1096 Baku, Azerbaijan.
In this study, a green synthesis method for synthesizing a novel nanocomposite (CuO/g-C₃N₄/Fe₃O₄) utilizing renewable dragon fruit peels as the primary raw material was developed. Hydrothermal and thermal decomposition techniques were used for nanocomposite synthesis. This nanocomposite was subsequently employed for the separation and preconcentration of Cd(II) from various environments, including food and water samples.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Physical and Chemical Sciences, Università degli Studi dell'Aquila, L'Aquila 67100, Italy.
Solid magnetic liposomes (ML, nanocomposites comprising lipid bilayers that incorporate magnetic nanoparticles) may be used in wastewater remediation: the lipid bilayer creates an environment where organic pollutants preferentially partition instead of water and the manipulation of ML with an external magnet enables an easy recovery from water. This study aimed to assess the system's potential for water remediation, focusing on ML ability to remove common pollutants in industrial wastewater. Specifically, alkylphenol ethoxylates (APEO) were used as the archetype for organic pollutants.
View Article and Find Full Text PDFDiscov Nano
January 2025
Department of Chemical Engineering, Military Technical College (MTC), Cairo, Egypt.
The world is now facing a water scarcity crisis due to waste, pollution, and uneven distribution of freshwater resources, which are limited. Thus, the creation of innovative, economical, and effective methods for purifying water is crucial. Here, the photo-assisted degradation of methylene blue (MB) dye under visible light and UV was achieved by using RGO photocatalyst loaded with ZnCuFeO in three different loaded 10%, 20%, and 30% called MRGO 10, MRGO 20, and MRGO 30.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!