Peroxisome proliferator-activated receptors (PPARs), peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α), sirtuin 1 (SIRT1) and adenosine monophosphate-activated protein kinase (AMPK) are regulators of transcriptional processes and effects of exercise and pseudo-exercise situations. Compounds occasionally referred to as endurance exercise mimetics such as AdipoRon and 112254, both adiponectin receptor agonists, can be used to simulate the physiology of endurance exercise via pathways including these transcriptional regulators. Adiponectin supports fatty acid utilization and triglyceride-content reduction in cells and increases both the mitochondrial biogenesis and the oxidative metabolism in muscle cells. In routine doping control analysis, knowledge about phase-I and -II metabolic products of target analytes is essential. Hence, in vitro- and in vivo-metabolism experiments are frequently employed tools in preventive doping research to determine potential urinary metabolites for sports drug testing purposes, especially concerning new, (yet) unapproved compounds. In the present study, in vitro assays were conducted using human liver microsomal and S9 fractions, and rat in vivo experiments were performed using both AdipoRon and 112254. For AdipoRon, obtained samples were analyzed using liquid chromatography-high resolution/high accuracy (tandem) mass spectrometry with both electrospray ionization or atmospheric-pressure chemical ionization techniques. Overall, more than five phase I-metabolites were found in vitro and in vivo, including particularly monohydroxylated and hydrogenated species. No phase II-metabolites were found in vitro; conversely, signals suggesting the presence of glucuronic acid or other conjugates in samples collected from in vivo experiment were observed, the structures of which were however not conclusively identified. Also for 112254, several phase-I metabolites were found in vitro, e.g. monohydroxylated and demethylated species. Here, no phase II-metabolites were observed neither using in vitro nor in vivo samples. Based on the generated data, the implementation of metabolites and unmodified drug candidates into routine doping control protocols is deemed warranted for comprehensive sports drug testing programs until human elimination study data are available.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jpba.2016.03.027 | DOI Listing |
Alzheimers Dement
December 2024
University of Florida / Center for Translational Research in Neurodegenerative Disease, Gainesville, FL, USA.
Background: Vaxxinity is developing an active immunotherapy targeting Tau for Alzheimer's disease (AD) and other tauopathies. VXX-301 is a multi-epitope vaccine designed to target the N-terminal and repeat domains of Tau. This design enables targeting multiple forms of Tau thought to contribute to Tau associated pathologies.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Columbia University Irving Medical Center, New York, NY, USA.
Background: Genetic studies indicate a causal role for microglia, the innate immune cells of the central nervous system (CNS), in Alzheimer's disease (AD). Despite the progress made in identifying genetic risk factors, such as CD33, and underlying molecular changes, there are currently limited treatment options for AD. Based on the immune-inhibitory function of CD33, we hypothesize that inhibition of CD33 activation may reverse microglial suppression and restore their ability to resolve inflammatory processes and mitigate pathogenic amyloid plaques, which may be neuroprotective.
View Article and Find Full Text PDFBackground: Impaired Aβ clearance plays a key role in the common, late-onset AD. Anti-Aβ immunotherapies are controversial, in part because of high rates of serious side effects including edema, microhemorrhages, and siderosis, highlighting the importance of the development of alternative Aβ clearance strategy. Here, we introduce a bioinspired nanoparticle named MG-PE3 crossing the human blood-brain barrier (BBB) and clearing Aβ with no adverse effect.
View Article and Find Full Text PDFBackground: The hyperphosphorylation, mislocalization, and aggregation of the microtubule associated protein Tau (MAPT) is a driving force in tauopathies, a group of progressive, neurodegenerative disorders. These pathogenic intracellular aggregates, known as neurofibrillary tangles (NFTs), are a hallmark in several diseases such as frontotemporal dementia, progressive supranuclear palsy, and Alzheimer's Disease. While anti-Tau immunotherapies emphasize the clearance of extracellular Tau aggregates, they do not address the intracellular accumulation of NFTs.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
MRC Protein Phosphorylation and Ubiquitylation Unit, Dundee, Scotland, United Kingdom.
Background: Accumulation of misfolded a-synuclein protein in intracellular inclusion bodies of dopaminergic neurons underlies the pathogenesis of synucleinopathies, which include Parkinson's Disease (PD), Dementia with Lewy Bodies (DLB) and Multiple System Atrophy (MSA). Therefore, clearance of misfolded α-synuclein from dopaminergic neurons could in principle offer a an approach for modifying synucleinopathies, which currently remain untreatable.
Method: In this study, we employ the Affinity-directed PROtein Missile (AdPROM) system consisting of the substrate receptor of the CUL2-E3 ligase complex VHL and a nanobody selectively recognising the human α-synuclein protein RESULT: We demonstrate targeted degradation of endogenous α-synuclein from human cell lines with exquisite selectivity.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!