Enhanced brain targeting efficacy of Olanzapine through solid lipid nanoparticles.

Artif Cells Nanomed Biotechnol

b Department of Pharmacology, JSS College of Pharmacy, Udhagamandalam , JSS University, Mysore , India.

Published: March 2017

Olanzapine (OLZ) is a typical anti-psychotic drug, which is highly lipophilic in nature, belongs to Biopharmaceutical Classification System (BCS) class II category. Though OLZ is an effective agent in the treatment of Schizophrenia, but it exhibits poor bioavailability (57%) due to extensive first-pass metabolism resulted in high dose is required to achieve therapeutic concentration in brain. Emerging evidences are indicating that high dose administration of OLZ may cause Extrapyramidal symptoms (EPS) in the psychotic patients. Hence, the present study is designed to develop Olanzapine solid lipid (OLZ-SLNs) using minimal dose of OLZ thereby enhancing the brain efficacy as well as to reduce the side effects associated with OLZ. OLZ-SLNs have been prepared by "solvent diffusion method" using lipids, such as glyceryl monostearate (GMS), tripalmitin (TP), Tween 80, and Stearyl amine as positive charge inducer. The prepared OLZ-SLNs were subjected to particle size analysis, zeta potential, and poly dispersity index measurement by using Malvern Zetasizer. Pharmacokinetics assessments of OLZ-SLNs were carried in conscious male Wistar rats through intravenous administration. Results have shown that average particle size and zeta potential of SLNs of GMS and TP were ranged from 165.1 ± 2.2 to 110.5 ± 0.5 and 35.29 ± 1.2 and 66.50 ± 0.7 mV, respectively. Relative bioavailability of OLZ in the brain was increased up to 23-fold and clearance was decreased when OLZ-SLNs while administrated intravenously. The area under the curve (AUC) and mean residence time (MRT) of OLZ-SLNs in brain were higher than OLZ suspension. These results indicate that SLNs are a promising drug delivery for OLZ. It may be an effective tool to enhance the bioavailability of OLZ in the brain with less dose administration, which could reduce the EPS associated with OLZ.

Download full-text PDF

Source
http://dx.doi.org/10.3109/21691401.2016.1160402DOI Listing

Publication Analysis

Top Keywords

olz
10
olanzapine solid
8
solid lipid
8
olz effective
8
high dose
8
dose administration
8
associated olz
8
particle size
8
zeta potential
8
bioavailability olz
8

Similar Publications

Olanzapine exposure disordered lipid metabolism, gut microbiota and behavior in zebrafish (Danio rerio).

Comp Biochem Physiol C Toxicol Pharmacol

January 2025

College of Fisheries, Henan Normal University, Xinxiang 453007, PR China; Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang 453007, PR China. Electronic address:

Olanzapine (OLZ) is widely used in the treatment of schizophrenia, and its metabolic side effects have garnered significant attention in recent years. Despite this, the specific side effects of OLZ and the underlying mechanisms remain inadequately understood. To address this gap, zebrafish (Danio rerio) were exposed to OLZ at concentrations of 35.

View Article and Find Full Text PDF

Objective: Therapeutic drug monitoring (TDM) indicators have been suggested to predict overall outcome responses to olanzapine (OLZ) treatments in terms of efficacy and metabolic syndrome. This study aimed to investigate whether paraoxonase-1 (PON-1) activity can be used to predict schizophrenia patient outcomes.

Methods: Schizophrenic patients ( = 50) aged between 20 and 65 years who received OLZ treatment were recruited, and their Positive and Negative Syndrome Scale scores, PON-1 activity, and olanzapine drug levels normalized by dose (OLZ/D) and its metabolite N-desmethyl-olanzapine (DMO), together with biochemical parameters, were determined.

View Article and Find Full Text PDF

Background: Maintaining gut microbial homeostasis is crucial for human health, as imbalances in the gut microbiota (GM) can lead to various diseases, including metabolic syndrome (MS), exacerbated by the use of antipsychotic medications such as olanzapine (OLZ). Understanding the role of the GM in OLZ-induced MS could lead to new therapeutic strategies. This study used metagenomic analysis to explore the impact of OLZ on the GM composition and examined how probiotics can mitigate its adverse effects in a rat model.

View Article and Find Full Text PDF

The Preventive Effect of Zinc Sulfate against Olanzapine-Induced Testicular Toxicity in Male Rats.

Biol Trace Elem Res

December 2024

Institute of Specific Prophylaxis and Tropical Medicine [ISPTM], Center for Pathophysiology, Infectiology and Immunology [CePII], Ocular Immunology & Infectiology, Medical University of Vienna, Vienna, Austria.

Male infertility is a complex and multifactorial clinical condition affecting a large population attributed to several factors, including perturbation in oxidative stress and the level of essential trace elements. Oxidative stress exerts multiple issues related to reproductive health, including male infertility, decreased sperm motility, sperm DNA damage, and an increased susceptibility to genetic disorders. Besides chemical toxins and food allergens in junk food items, many drugs can also lead to male infertility.

View Article and Find Full Text PDF
Article Synopsis
  • - The study evaluated the long-term safety, tolerability, and effect of olanzapine/samidorphan (OLZ/SAM) in patients with schizophrenia, schizophreniform disorder, or bipolar I disorder for up to 4 years, following the ENLIGHTEN clinical program.
  • - Out of 524 enrolled patients, the majority had schizophrenia, and common adverse effects included weight gain, headache, and anxiety, with minimal changes in metabolic parameters over the treatment duration.
  • - The treatment showed stable scores on the Clinical Global Impressions-Severity scale, indicating maintained symptom control and a long-term safety profile consistent with previous studies.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!