AI Article Synopsis

  • Little progress has been made in improving pancreatic cancer survival rates, with extreme hypoxia in tumors hindering treatment effectiveness.
  • Researchers developed an implantable micro-oxygen generator (IMOG) that produces oxygen in tumors by using ultrasonic waves to electrolyze water, significantly boosting oxygen levels.
  • In experiments with mice, tumors with an activated IMOG showed inhibited growth when treated with radiation, comparable to tumors that received a higher radiation dose, suggesting the IMOG can enhance the effectiveness of radiation therapy.

Article Abstract

Over the past decades, little progress has been made to improve the extremely low survival rates in pancreatic cancer patients. Extreme hypoxia observed in pancreatic tumors contributes to the aggressive and metastatic characteristics of this tumor and can reduce the effectiveness of conventional radiation therapy and chemotherapy. In an attempt to reduce hypoxia-induced obstacles to effective radiation treatment, we used a novel device, the implantable micro-oxygen generator (IMOG), for in situ tumor oxygenation. After subcutaneous implantation of human pancreatic xenograft tumors in athymic rats, the IMOG was wirelessly powered by ultrasonic waves, producing 30 μA of direct current (at 2.5 V), which was then utilized to electrolyze water and produce oxygen within the tumor. Significant oxygen production by the IMOG was observed and corroborated using the NeoFox oxygen sensor dynamically. To test the radiosensitization effect of the newly generated oxygen, the human pancreatic xenograft tumors were subcutaneously implanted in nude mice with either a functional or inactivated IMOG device. The tumors in the mice were then exposed to ultrasonic power for 10 min, followed by a single fraction of 5 Gy radiation, and tumor growth was monitored thereafter. The 5 Gy irradiated tumors containing the functional IMOG exhibited tumor growth inhibition equivalent to that of 7 Gy irradiated tumors that did not contain an IMOG. Our study confirmed that an activated IMOG is able to produce sufficient oxygen to radiosensitize pancreatic tumors, enhancing response to single-dose radiation therapy.

Download full-text PDF

Source
http://dx.doi.org/10.1667/RR14149.1DOI Listing

Publication Analysis

Top Keywords

pancreatic cancer
8
implantable micro-oxygen
8
micro-oxygen generator
8
pancreatic tumors
8
radiation therapy
8
human pancreatic
8
pancreatic xenograft
8
xenograft tumors
8
tumor growth
8
irradiated tumors
8

Similar Publications

Pancreatic Ductal Adenocarcinoma (PDAC) is a devastating disease with poor clinical outcomes, which is mainly because of delayed disease detection, resistance to chemotherapy, and lack of specific targeted therapies. The disease's development involves complex interactions among immunological, genetic, and environmental factors, yet its molecular mechanism remains elusive. A major challenge in understanding PDAC etiology lies in unraveling the genetic profiling that governs the PDAC network.

View Article and Find Full Text PDF

Background: Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal diseases. Although several chemotherapy regimens have been developed over the past decades, few targeted therapies have shown a significant improvement in overall survival, partly due to the identification of PDAC as a single disease.

Methods: Combining metabolomic analysis and immunohistochemistry staining with Oil Red O staining, analysis for the oxygen consumption rate and extracellular acidification rate, we stratified pancreatic cancer cells into two subtypes.

View Article and Find Full Text PDF

The word "cancer" evokes myriad emotions, ranging from fear and despair to hope and determination. Cancer is aptly defined as a complex and multifaceted group of diseases that has unapologetically led to the loss of countless lives and affected innumerable families across the globe. The battle with cancer is not only a physical battle, but also an emotional, as well as a psychological skirmish for patients and for their loved ones.

View Article and Find Full Text PDF

Introduction: Metabolic dysfunction-associated steatotic liver disease (MASLD) has been linked to pancreatic diseases, but evidence from population-based studies with liver histology is lacking.

Aims And Methods: In this population-based cohort including all Swedish adults (n = 8563) with biopsy-proven MASLD, we aimed to investigate incidences of pancreatic diseases compared with matched reference individuals from the general population (n = 38,858) and full siblings (n = 6696). Using Cox proportional hazard models, we calculated multivariable adjusted hazard ratios (aHRs) and confidence intervals (CIs).

View Article and Find Full Text PDF

Among the various types of pancreatic cancers, pancreatic ductal adenocarcinoma (PDAC) is the most lethal and aggressive, due to its tendency to metastasize quickly and has a particularly low five-year survival rate. Carbohydrate antigen 19-9 (CA 19-9) is the only biomarker approved by the Food and Drug Administration for PDAC and has been a focal point in diagnostic strategies, but its sensitivity and specificity are not sufficient for early and accurate detection. To address this issue, we introduce a synergistic approach combining CA 19-9 levels with a graphene oxide (GO)-based blood test.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!