We report a systematic study on the correlation of the electrical transport properties with the crystal phase and orientation of single-crystal InAs nanowires (NWs) grown by molecular-beam epitaxy. A new method is developed to allow the same InAs NW to be used for both the electrical measurements and transmission electron microscopy characterization. We find both the crystal phase, wurtzite (WZ) or zinc-blende (ZB), and the orientation of the InAs NWs remarkably affect the electronic properties of the field-effect transistors based on these NWs, such as the threshold voltage (VT), ON-OFF ratio, subthreshold swing (SS) and effective barrier height at the off-state (ΦOFF). The SS increases while VT, ON-OFF ratio, and ΦOFF decrease one by one in the sequence of WZ ⟨0001⟩, ZB ⟨131⟩, ZB ⟨332⟩, ZB ⟨121⟩, and ZB ⟨011⟩. The WZ InAs NWs have obvious smaller field-effect mobility, conductivities, and electron concentration at VBG = 0 V than the ZB InAs NWs, while these parameters are not sensitive to the orientation of the ZB InAs NWs. We also find the diameter ranging from 12 to 33 nm shows much less effect than the crystal phase and orientation on the electrical transport properties of the InAs NWs. The good ohmic contact between InAs NWs and metal remains regardless of the variation of the crystal phase and orientation through temperature-dependent measurements. Our work deepens the understanding of the structure-dependent electrical transport properties of InAs NWs and provides a potential way to tailor the device properties by controlling the crystal phase and orientation of the NWs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.nanolett.6b00045 | DOI Listing |
ACS Appl Mater Interfaces
December 2024
Key Laboratory for the Physics and Chemistry of Nanodevices, School of Electronics, Peking University, Beijing 100871, China.
Nanowire (NW) field-effect transistors (FETs) have great potential in next-generation integrated circuits. InAs NWs are suitable for N-type transistors because of their excellent electrical properties. However, unlike the Si/SiO system, the loose and defective native oxide of InAs is unable to passivate the channel surface and serve as an efficient isolation layer (IL) in the gate stack.
View Article and Find Full Text PDFNat Commun
October 2024
Department of Physics, Institute of Physics, Budapest University of Technology and Economics, Müegyetem rkp. 3., H-1111, Budapest, Hungary.
The observation of the gate-controlled supercurrent (GCS) effect in superconducting nanostructures increased the hopes for realizing a superconducting equivalent of semiconductor field-effect transistors. However, recent works attribute this effect to various leakage-based scenarios, giving rise to a debate on its origin. A proper understanding of the microscopic process underlying the GCS effect and the relevant time scales would be beneficial to evaluate the possible applications.
View Article and Find Full Text PDFACS Appl Mater Interfaces
May 2024
NEST Istituto Nanoscienze Consiglio Nazionale delle Ricerche (CNR) and Scuola Normale Superiore, 56127 Pisa, Italy.
InAsP quantum dots (QDs) in InP nanowires (NWs) have been realized as a platform for emission at telecom wavelengths. These QDs are typically grown in NWs with the wurtzite crystal phase, but in this case, ultrathin diameters are required to achieve defect-free heterostructures, making the structures less robust. In this work, we demonstrate the growth of pure zincblende InAsP QDs in InP NWs, which enabled an increase in NW diameters to about 45 nm, achieved by employing Au-assisted vapor liquid solid growth in a chemical beam epitaxy system.
View Article and Find Full Text PDFACS Appl Mater Interfaces
February 2024
Peter Grünberg Institut 9 (PGI 9), Forschungszentrum Jülich, 52425 Jülich, Germany.
Core-only InAs nanowires (NWs) remain of continuing interest for application in modern optical and electrical devices. In this paper, we utilize the II-VI semiconductor CdSe as a shell for III-V InAs NWs to protect the electron transport channel in the InAs core from surface effects. This unique material configuration offers both a small lattice mismatch between InAs and CdSe and a pronounced electronic confinement in the core with type-I band alignment at the interface between both materials.
View Article and Find Full Text PDFNat Commun
January 2024
Department of Physics, University of Oxford, Clarendon Laboratory, Parks Road, Oxford, OX1 3PU, UK.
Terahertz (THz) radiation will play a pivotal role in wireless communications, sensing, spectroscopy and imaging technologies in the decades to come. THz emitters and receivers should thus be simplified in their design and miniaturized to become a commodity. In this work we demonstrate scalable photoconductive THz receivers based on horizontally-grown InAs nanowires (NWs) embedded in a bow-tie antenna that work at room temperature.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!