Mobile technology is increasingly used to measure visual acuity. Standards for chart-based acuity tests specify photometric requirements for luminance, optotype contrast and luminance uniformity. Manufacturers provide some photometric data but little is known about tablet performance for visual acuity testing. This study photometrically characterised seven tablet computers (iPad, Apple inc.) and three ETDRS (Early Treatment Diabetic Retinopathy Study) visual acuity charts with room lights on and off, and compared findings with visual acuity measurement standards. Tablet screen luminance and contrast were measured using nine points across a black and white checkerboard test screen at five arbitrary brightness levels. ETDRS optotypes and adjacent white background luminance and contrast were measured. All seven tablets (room lights off) exceeded the most stringent requirement for mean luminance (≥ 120 cd/m2) providing the nominal brightness setting was above 50%. All exceeded contrast requirement (Weber ≥ 90%) regardless of brightness setting, and five were marginally below the required luminance uniformity threshold (Lmin/Lmax ≥ 80%). Re-assessing three tablets with room lights on made little difference to mean luminance or contrast, and improved luminance uniformity to exceed the threshold. The three EDTRS charts (room lights off) had adequate mean luminance (≥ 120 cd/m2) and Weber contrast (≥ 90%), but all three charts failed to meet the luminance uniformity standard (Lmin/Lmax ≥ 80%). Two charts were operating beyond manufacturer's recommended lamp replacement schedule. With room lights on, chart mean luminance and Weber contrast increased, but two charts still had inadequate luminance uniformity. Tablet computers showed less inter-device variability, higher contrast, and better luminance uniformity than charts in both lights-on and lights-off environments, providing brightness setting was >50%. Overall, iPad tablets matched or marginally out-performed ETDRS charts in terms of photometric compliance with high contrast acuity standards.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4803292PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0150676PLOS

Publication Analysis

Top Keywords

luminance uniformity
24
visual acuity
20
room lights
20
luminance
13
luminance contrast
12
brightness setting
12
contrast
9
photometric compliance
8
acuity
8
charts
8

Similar Publications

Supercycle Al-Doped ZnMgO Alloys via Atomic Layer Deposition for Quantum Dot Light-Emitting Diodes.

ACS Appl Mater Interfaces

January 2025

Department of Photonics and Nanoelectronics, and BK21 FOUR ERICA-ACE Center, Hanyang University, Ansan 15588, Korea.

Colloidal quantum-dot light-emitting diodes (QD-LEDs) have been significantly improved in terms of device performance and lifetime by employing zinc oxide (ZnO) as an electron transport layer (ETL). Although atomic layer deposition (ALD) allows fabrication of uniform, high-quality ZnO films with minimal defects, the high conductivity of ZnO has hindered its straightforward application as an ETL in QD-LEDs. Herein, we propose fabrication of Al-doped ZnMgO (Al:ZnMgO) ETLs for QD-LEDs through a supercycle ALD, with alternating depositions of various metal oxides.

View Article and Find Full Text PDF

Large Scale Synthesis of Red-Emitting Quantum Dots for Efficient and Stable Light-Emitting Diodes.

Adv Mater

December 2024

Department of Applied Biology and Chemical Technology and Research Institute for Smart Energy, The Hong Kong Polytechnic University (PolyU), Hung Hom, Hong Kong, P. R. China.

It is known that large-scale synthesis of emitters affords colloidal quantum dot (CQD) materials with a great opportunity toward the mass production of quantum dot light-emitting diodes (QLEDs) based commercial electronic products. Herein, an unprecedented example of scalable CQD (> 0.5 kilogram) is achieved by using a core/shell structure of CdZnSe/ZnSeS/CdZnS, in which CdZnSe, ZnSeS, and CdZnS alloys are used as the inner core, transition layer and outermost shell, respectively.

View Article and Find Full Text PDF

Patterning technologies of quantum dots for color-conversion micro-LED display applications.

Nanoscale

December 2024

Fujian Engineering Research Center for Solid-State Lighting, Department of Electronic Science, School of Electronic Science and Engineering, Xiamen University, Xiamen, 361102 Fujian, China.

Quantum dot (QD) materials and their patterning technologies play a pivotal role in the full colorization of next-generation Micro-LED display technology. This article reviews the latest development in QD materials, including II-VI group, III-V group, and perovskite QDs, along with the state of the art in optimizing QD performance through techniques such as ligand engineering, surface coating, and core-shell structure construction. Additionally, it comprehensively covers the progress in QD patterning methods, such as inkjet printing, photolithography, electrophoretic deposition, transfer printing, microfluidics, and micropore filling method, and emphasizes their crucial role in achieving high precision, density, and uniformity in QD deposition.

View Article and Find Full Text PDF

Ligand Engineering Achieves Suppression of Temperature Quenching in Pure Green Perovskite Nanocrystals for Efficient and Thermostable Electroluminescence.

Nanomicro Lett

November 2024

Institute of Polymer Optoelectronic Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence From Molecular Aggregates, South China University of Technology, Guangzhou, 510640, People's Republic of China.

Formamidinium lead bromide (FAPbBr) perovskite nanocrystals (NCs) are promising for display and lighting due to their ultra-pure green emission. However, the thermal quenching will exacerbate their performance degradation in practical applications, which is a common issue for halide perovskites. Here, we reported the heat-resistant FAPbBr NCs prepared by a ligand-engineered room-temperature synthesis strategy.

View Article and Find Full Text PDF

Improving the Uniformity and Stretchability of Inkjet-Printed Films by Adding the Surfactant Triton X.

ACS Appl Mater Interfaces

December 2024

State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China.

Stretchable organic light-emitting diodes (OLEDs) are a key component of stretchable electronics. Inkjet printing is a potential processing method for stretchable and flexible OLEDs. However, improving the uniformity and stretchability of the emission layer (EML) prepared by inkjet printing is challenging.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!