Unlabelled: We have investigated the impact of growth on glucosamine (GlcN) and N-acetylglucosamine (GlcNAc) on cellular metabolism by quantifying glycolytic metabolites in Escherichia coli Growth on GlcNAc increased intracellular pools of both GlcNAc6P and GlcN6P 10- to 20-fold compared to growth on glucose. Growth on GlcN produced a 100-fold increase in GlcN6P but only a slight increase in GlcNAc6P. Changes to the amounts of downstream glycolytic intermediates were minor compared to growth on glucose. The enzyme glucosamine-6P deaminase (NagB) is required for growth on both GlcN and GlcNAc. It is an allosteric enzyme in E. coli, displaying sigmoid kinetics with respect to its substrate, GlcN6P, and is allosterically activated by GlcNAc6P. The high concentration of GlcN6P, accompanied by the small increase in GlcNAc6P, drives E. coli NagB (NagBEc) into its high activity state, as observed during growth on GlcN (L. I. Álvarez-Añorve, I. Bustos-Jaimes, M. L. Calcagno, and J. Plumbridge, J Bacteriol 191:6401-6407, 2009, http://dx.doi.org/10.1128/JB.00633-09). The slight increase in GlcNAc6P during growth on GlcN is insufficient to displace NagC, the GlcNAc6P-responsive repressor of the nag genes, from its binding sites, so there is only a small increase in nagB expression. We replaced the gene for the allosteric NagBEc enzyme with that of the nonallosteric, B. subtilis homologue, NagBBs We detected no effects on growth rates or competitive fitness on glucose or the amino sugars, nor did we detect any effect on the concentrations of central metabolites, thus demonstrating the robustness of amino sugar metabolism and leaving open the question of the role of allostery in the regulation of NagB.

Importance: Chitin, the polymer of N-acetylglucosamine, is an abundant biomaterial, and both glucosamine and N-acetylglucosamine are valuable nutrients for bacteria. The amino sugars are components of numerous essential macromolecules, including bacterial peptidoglycan and mammalian glycosaminoglycans. Controlling the biosynthetic and degradative pathways of amino sugar metabolism is important in all organisms to avoid loss of nitrogen and energy via a futile cycle of synthesis and breakdown. The enzyme glucosamine-6P deaminase (NagB) is central to this control, and N-acetylglucosamine-6P is the key signaling molecule regulating amino sugar utilization in Escherichia coli Here, we investigate how the metabolic status of the bacteria impacts on the activity of NagBEc and the N-acetylglucosamine-6P-sensitive transcriptional repressor, NagC.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4959280PMC
http://dx.doi.org/10.1128/JB.00870-15DOI Listing

Publication Analysis

Top Keywords

amino sugar
16
growth glcn
16
escherichia coli
12
deaminase nagb
12
increase glcnac6p
12
growth
9
compared growth
8
growth glucose
8
slight increase
8
enzyme glucosamine-6p
8

Similar Publications

Powdered germinated Thai rice () is widely utilised as a dietary supplement to support health and prevent diseases. This study investigated the bioactive compound profile of water extracts from beverage powder made from Thai germinated brown rice (GBRE) and assessed its anticancer effects on cholangiocarcinoma, lung cancer, and liver cancer cell lines. Proton nuclear magnetic resonance (1H-NMR) revealed 23 metabolites, including amino acids, sugar, phenolic compounds and nitrogenous compounds.

View Article and Find Full Text PDF

Plant viruses have been known to alter host metabolites that influence the attraction of insect vectors. Our study investigated whether (CYVCV) infection influences vector attractiveness, focusing on the citrus whitefly, (Ashmead). Free choice assays showed that citrus whiteflies exhibited a preference for settling on CYVCV-infected lemon plants versus healthy control plants.

View Article and Find Full Text PDF

This study presents a comprehensive phyto- and histochemical analysis of three species: L., the Balkan endemic Guss., and the Bulgarian endemic Delip.

View Article and Find Full Text PDF

Lignin Metabolism Is Crucial in the Plant Responses to (Shen) in L.

Plants (Basel)

January 2025

Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China.

(Shen) (Hemiptera: Cicadellidae) is a devastating insect pest species of , significantly affecting the yield and quality of tea. Due to growing concerns over the irrational use of insecticides and associated food safety, it is crucial to better understand the innate resistance mechanism of tea trees to . This study aims to explore the responses of tea trees to different levels of infestation.

View Article and Find Full Text PDF

This study evaluates the efficiency of 20 Natural Deep Eutectic Solvents (NADES) formulations for extracting curcuminoids and other bioactive compounds from turmeric and emphasize their ability to preserve and enhance antioxidant, antimicrobial, antidiabetic, and skin depigmentation effects. The NADES formulations, prepared using choline chloride (ChCl) combined with sugars, carboxylic acids, glycerol, amino acids, urea, polyols, and betaine, were assessed for their extraction efficiency based on the total phenolic content and curcumin concentration. Fourier transform infrared spectroscopy was employed to characterize the synthesized NADES and confirm their chemical composition.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!