A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Effect of Rifampin on the Disposition of Brivaracetam in Human Subjects: Further Insights into Brivaracetam Hydrolysis. | LitMetric

Effect of Rifampin on the Disposition of Brivaracetam in Human Subjects: Further Insights into Brivaracetam Hydrolysis.

Drug Metab Dispos

UCB Pharma, Braine-l'Alleud, Belgium (A.S., S.W., D.T., B.G., M.R., H.C., J.-M.N.); and Clinical Pharmacology Unit, University Hospital Center, Liège, Belgium (A.J.S.).

Published: June 2016

Brivaracetam (BRV) is a high-affinity synaptic vesicle protein 2A ligand developed for the treatment of uncontrolled partial-onset seizures. The present phase I, open-label, two-way crossover study was designed to assess the effect of rifampin on the pharmacokinetics of BRV and its hydroxy (BRV-OH), acid (BRV-AC), and hydroxy acid (BRV-OHAC) metabolites. Twenty-six healthy subjects received BRV (150-mg single oral dose) either alone or following 5 days of rifampin 600 mg/day. BRV and its metabolites were examined for their plasma profiles and urinary excretion. Pharmacokinetic modeling was developed to estimate the rate constants of the various metabolic routes. Parallel in vitro assays were conducted to characterize the hydrolysis of BRV to BRV-AC as well as to identify any potential effect of rifampin on the hydrolysis reaction. Rifampin did not significantly affect the maximum plasma concentration (Cmax) of BRV, but decreased its area under the curve (AUC) by 45%. In addition, rifampin significantly increased the AUC of BRV-OH (+109%), decreased the AUC of BRV-AC (-53%), but had little effect on BRV-OHAC (-10%). In vitro assays showed that the major urinary metabolite BRV-AC (33% of the dose) was likely to be formed by amidase EC 3.5.1.4. In vitro data indicated that the enzyme was not significantly inhibited nor induced by rifampin. Modeling confirmed that all of the observed changes in vivo were secondary to the induction of the CYP2C19-mediated hydroxylation of BRV to BRV-OH (3.7-fold increase in the rate constant).

Download full-text PDF

Source
http://dx.doi.org/10.1124/dmd.115.069161DOI Listing

Publication Analysis

Top Keywords

vitro assays
8
rifampin
7
brv
7
rifampin disposition
4
disposition brivaracetam
4
brivaracetam human
4
human subjects
4
subjects insights
4
insights brivaracetam
4
brivaracetam hydrolysis
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!