The fabrication of porous coordination frameworks in thin-film forms has been investigated intensively with a view to using their structural response to external stimuli and guests for potential nanotechnological applications, for example as membranes for gas separation. Here we report a coordination framework that exhibits a dynamic guest-sorption behaviour in a nanometre-sized thin-film form (16 nm thick), yet shows no guest uptake in the bulk. Highly oriented crystalline thin films of this coordination framework--which consists of interdigitated two-dimensional layers of {Fe(py)2[Pt(CN)4]} (py, pyridine)--were fabricated through liquid-phase layer-by-layer synthesis. The resulting thin film exhibited a clear guest uptake with a structural transformation of the gate-opening type as characterized by in situ X-ray diffraction. Increasing the film's thickness markedly suppressed this behaviour. We envisage that such a crystal-downsizing effect may be observed with other coordination frameworks, and may be of use to develop functional materials, for example, for switching or sensing devices.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/nchem.2469 | DOI Listing |
Chemphyschem
January 2025
Shanxi University, Institute of Molecular Science, CHINA.
Delocalized multicenter bonds play a crucial role in clusters with a planar hypercoordinate center(s), making it difficult for highly electronegative elements, especially halogen atoms, to achieve the planar hypercoordinate arrangement. Herein, we introduce a star-like cluster Br6Li5-, whose global minimum contains a planar pentacoordinate bromine (ppBr). In this cluster, the central ppBr atom coordinates with five alkali metal Li atoms, which in turn bridge an equal number of electronegative Br atoms in the periphery, leading to the formation of the binary cluster Br6Li5-.
View Article and Find Full Text PDFNutrients
January 2025
Food Systems Program, University of Vermont, Burlington, VT 05405, USA.
Background/objectives: Rural communities face a disproportionate burden in terms of diet-related health challenges and have been identified as a target for the U.S. Department of Agriculture's nutrition security initiatives.
View Article and Find Full Text PDFNutrients
January 2025
Department of Nutritional Sciences, College of Health and Human Sciences, Texas Tech University, Lubbock, TX 79409, USA.
Background: Malnutrition remains a significant public health issue in Kenya. Multisectoral Nutrition Governance (MNG) is increasingly being acknowledged as a catalyst for enhancing nutrition programming and outcomes. Effective MNG establishes policies, systems, and mechanisms that enable coordinated, adequately funded, and sustainable nutrition actions across sectors; however, its understanding and progress assessment remain inadequate.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Department of Materials Science and Engineering, Iowa State University, Ames, IA 50011, USA.
This review examines the recent advancements and unique properties of polymer-inorganic hybrid materials formed through coordination bonding (Class II hybrids), which enable enhanced functionality and stability across various applications. Here, we categorize these materials based on properties gained through complexation, focusing on electrical conductivity, thermal stability, photophysical characteristics, catalytic activity, and nanoscale self-assembly. Two major synthetic approaches to making these hybrids include homogeneous and heterogeneous methods, each with distinct tradeoffs: Homogeneous synthesis is straightforward but requires favorable mixing between inorganic and polymer species, which are predominantly water-soluble complexes.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Department of Physics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand.
To solve the energy crisis and environmental issues, it is essential to create effective and sustainable energy conversion and storage technologies. Traditional materials for energy conversion and storage however have several drawbacks, such as poor energy density and inadequate efficiency. The advantages of MOF-based materials, such as pristine MOFs, also known as porous coordination polymers, MOF composites, and their derivatives, over traditional materials, have been thoroughly investigated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!