Purpose: The study aimed to identify single nucleotide polymorphisms (SNPs) that significantly influenced the level of improvement of two kinds of training responses, including maximal O2 uptake (V'O2max) and knee peak torque of healthy adults participating in the high intensity training (HIT) program. The study also aimed to use these SNPs to develop prediction models for individual training responses.
Methods: 79 Healthy volunteers participated in the HIT program. A genome-wide association study, based on 2,391,739 SNPs, was performed to identify SNPs that were significantly associated with gains in V'O2max and knee peak torque, following 9 weeks of the HIT program. To predict two training responses, two independent SNPs sets were determined using linear regression and iterative binary logistic regression analysis. False discovery rate analysis and permutation tests were performed to avoid false-positive findings.
Results: To predict gains in V'O2max, 7 SNPs were identified. These SNPs accounted for 26.0 % of the variance in the increment of V'O2max, and discriminated the subjects into three subgroups, non-responders, medium responders, and high responders, with prediction accuracy of 86.1 %. For the knee peak torque, 6 SNPs were identified, and accounted for 27.5 % of the variance in the increment of knee peak torque. The prediction accuracy discriminating the subjects into the three subgroups was estimated as 77.2 %.
Conclusions: Novel SNPs found in this study could explain, and predict inter-individual variability in gains of V'O2max, and knee peak torque. Furthermore, with these genetic markers, a methodology suggested in this study provides a sound approach for the personalized training program.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00421-016-3353-7 | DOI Listing |
J Biomech
January 2025
Praxisklinik Rennbahn, Muttenz, Switzerland.
Previous evidence highlights the important role of knee joint malalignment and excessive joint moments for the development to knee osteoarthritis. The present study aimed to systematically investigate the interrelationship between three-dimensional knee kinematics during walking and stair climbing and ex-vivo electromechanical measured cartilage quality in 119 patients with end-stage knee osteoarthritis. Patients scheduled for total knee arthroplasty surgery underwent radiographic assessment and biomechanical analysis in gait and stair climbing assessing in vivo knee joint angles and moments during movement dynamics prior to surgery.
View Article and Find Full Text PDFSports Biomech
January 2025
School of Athletic Performance, Shanghai University of Sport, Shanghai, China.
The aim of this study was to investigate the relationships between knee and ankle strength and horizontal deceleration performance following different sprint distances. Fifty-seven ( = 41male, = 16 female) youth team-sports athletes completed: a) 5-m and 10-m horizontal deceleration ability (HDA) tests; b) concentric (60°/s, 180°/s) and eccentric (30°/s) relative peak torque (PT) measurements of the knee extensor (KE) and flexor (KF) muscles and the ankle plantarflexion (APF) and dorsiflexion (ADF) muscles in an isokinetic dynamometer. Pearson's correlation coefficients revealed that concentric at 60°/s and eccentric at 30°/s KE were mostly related to deceleration performance both in HDA ( = -0.
View Article and Find Full Text PDFSports Biomech
January 2025
Institute of Health and Sport Sciences, University of Tsukuba, Tsukuba, Japan.
It is well-known among swimmers and coaches that the swimming speed of the underwater dolphin kick (UDK) is higher than that of the underwater flutter kick (UFK). This study aimed to clarify the differences in swimming performance between the two kicking styles in terms of kinematics, kinetics and muscle activity. Eight male swimmers performed UDK and UFK in a water flume at same effort levels.
View Article and Find Full Text PDFBackground: To compare the effect of minimally invasive and open transforaminal lumbar interbody fusion (TLIF) approaches in fusing the L4-L5 segment and predicting the potential risk of adjacent segment degeneration (ASD).
Methods: A computed tomography scan image was processed and the three-dimensional model of the L1-L5 spine was reconstructed. The minimally invasive and Open TLIF finite element models were constructed.
Front Bioeng Biotechnol
January 2025
Julius Wolff Institute, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany.
Introduction: Anterior knee pain and other patello-femoral (PF) complications frequently limit the success of total knee arthroplasty as the final treatment of end stage osteoarthritis. However, knowledge about the loading conditions at the PF joint remains limited, as no direct measurements are available. We hypothesised that the external knee flexion moment (EFM) is highly predictive of the PF contact forces during activities with substantial flexion of the loaded knee.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!