A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Mechanics of the eukaryotic flagellar axoneme: Evidence for structural distortion during bending. | LitMetric

The sliding doublet mechanism is the established explanation that allows us to understand the process of ciliary and flagellar bending. In this study, we apply the principles of the sliding doublet mechanism to analyze the mechanics of the counterbend phenomenon in sea urchin sperm flagella. When a passive, vanadate-treated, flagellum is forced into a bend with a glass microprobe, the portion of the flagellum distal to the probe exhibits a bend of opposite curvature (counterbend) to the imposed bend. This phenomenon was shown to be caused by the induction of inter-doublet shear and is dependent on the presence of an inter-doublet shear resistance. Here we report that in sea urchin flagella there is systematically less shear induced in the distal flagellum than is predicted by the sliding doublet mechanism, if we follow the assumption that the diameter of the flagellum is uniform. To account for the reduced shear that is observed, the likeliest and most direct interpretation is that the portion of the axoneme that is forced to bend undergoes substantial compression of the axoneme in the bending plane. A compression of 30-50 nm would be sufficient to account for the shear reduction from a bend of 2 radians. A compression of this magnitude would require considerable flexibility in the axoneme structure. This would necessitate that the radial spokes and/or the central pair apparatus are easily compressed by transverse stress. © 2016 Wiley Periodicals, Inc.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cm.21296DOI Listing

Publication Analysis

Top Keywords

sliding doublet
12
doublet mechanism
12
sea urchin
8
forced bend
8
inter-doublet shear
8
bend
5
shear
5
mechanics eukaryotic
4
eukaryotic flagellar
4
axoneme
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!