According to the Centers for Disease Control and Prevention, the incidence of inflammatory bowel diseases (IBD) is about 1 in 250 people in the United States. The disease is characterized by chronic or recurring inflammation of the gut. Because of the localization of the endocannabinoid system in the gastrointestinal tract, it may be a potential pharmacologic target for the treatment of IBD and other diseases. Fatty acid amide hydrolase (FAAH) is a potential candidate because it is upregulated in IBD. FAAH hydrolyzes and, as a consequence, inactivates anandamide (AEA), a prominent endocannabinoid. Inhibition of FAAH would lead to increases in the amount of AEA oxidized by cytochrome P450s (P450s). CYP2J2, the major P450 epoxygenase expressed in the heart, is also expressed in the intestine and has previously been reported to oxidize AEA. We have investigated the possibility that it may play a role in AEA metabolism in the gut and have demonstrated that purified human CYP2J2 metabolizes AEA to form the 20-hydroxyeicosatetraenoic acid ethanolamide (HETE-EA) and several epoxygenated products, including the 5,6-, 8,9-, 11,12-, and 14,15-epoxyeicosatrienoic acid ethanolamides (EET-EAs), in the reconstituted system. Kinetic studies suggest that the KM values for these products range from approximately 10 to 468 μM and the kcat values from 0.2 to 23.3 pmol/min per picomole of P450. Human intestinal microsomes, which express CYP2J2, metabolize AEA to give the 5,6-, 8,9-, and 11,12-EET-EAs, as well as 20-HETE-EA. Studies using specific P450 inhibitors suggest that although CYP2J2 metabolizes AEA, it is not the primary P450 responsible for AEA metabolism in human intestines.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4885506PMC
http://dx.doi.org/10.1124/jpet.116.232553DOI Listing

Publication Analysis

Top Keywords

reconstituted system
8
human intestinal
8
intestinal microsomes
8
aea
8
aea metabolism
8
cyp2j2 metabolizes
8
metabolizes aea
8
56- 89-
8
human
5
p450
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!