Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Infection by Mycobacterium tuberculosis (Mtb) has had a devastating effect on the world population. Acyldepsipeptide antibiotics (ADEPs) are known to kill some bacteria by over activating the bacterial ClpP peptidase. ADEP antibiotics also target Mtb, with the assumption that uncontrolled ADEP-activated proteolysis by ClpP is the common mode of killing. In this issue of Molecular Microbiology, Famulla, et al. now show that ADEP's effectiveness in mycobacteria is likely due to inhibition of ClpP-dependent protease activity rather than activation. This finding of how the same antibiotic can kill bacteria by either inhibiting or activating proteases illustrates the utility of targeting these enzymes for sorely needed new antibiotics.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4935559 | PMC |
http://dx.doi.org/10.1111/mmi.13382 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!