AI Article Synopsis

Article Abstract

Endothelial nitric oxide (NO) is a significant signaling molecule that regulates cerebral blood flow (CBF), playing a pivotal role in the prevention and treatment of cerebrovascular diseases. However, achieving the expected therapeutic efficacy is difficult using direct administration of NO donors. Therefore, endothelial nitric oxide synthase (eNOS) becomes a potential therapeutic target for cerebrovascular diseases. This review summarizes the current evidence supporting the importance of CBF to cerebrovascular function, and the roles of NO and eNOS in CBF regulation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4802712PMC
http://dx.doi.org/10.1186/s13041-016-0211-9DOI Listing

Publication Analysis

Top Keywords

endothelial nitric
12
nitric oxide
12
cerebrovascular diseases
12
oxide synthase
8
potential therapeutic
8
therapeutic target
8
target cerebrovascular
8
synthase potential
4
cerebrovascular
4
diseases endothelial
4

Similar Publications

Protective Effect of Vitamin D Supplementation Against Atherosclerotic Cardiovascular Disease in Type 1 Diabetes Mellitus Model.

Endocr Metab Immune Disord Drug Targets

January 2025

Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, 24227, 20006, Saudi Arabia.

Introduction: Cardiovascular disease (CVD) is a leading cause of mortality on a global scale, with a higher prevalence observed among men. This study investigated the protective effect of vitamin D supplementation on CVD.

Methods: A cohort of thirty mice was divided into three groups: control, T1 diabetic, and T1 diabetic groups that received vitamin D treatment.

View Article and Find Full Text PDF

The vascular endothelium and its endothelial glycocalyx contribute to the protection of the endothelial cells from exposure to high levels of sodium and help these structures maintain normal function by regulating vascular permeability due to its buffering effect. The endothelial glycocalyx has negative surface charges that bind sodium and limit sodium entry into cells and the interstitial space. High sodium levels can disrupt this barrier and allow the movement of sodium into cells and extravascular fluid.

View Article and Find Full Text PDF

Berberine ameliorates seizure activity and cardiac dysfunction in pentylenetetrazol-kindling seizures in rats: Modulation of sigma1 receptor, Akt/eNOS signaling, and ferroptosis.

Neuropharmacology

January 2025

Pharmacology and Toxicology Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt; Pharmacology and Toxicology Department, Faculty of Pharmacy, King Salman International University (KSIU), South Sinai 46612, Egypt.

Seizures can lead to cardiac dysfunction. Multiple pathways contribute to this phenomenon, of which the chaperone sigma-1 receptor (S1R) signaling represents a promising nexus between the abnormalities seen in both epilepsy and ensuing cardiac complications. The study explored the potential of Berberine (BER), a promising S1R agonist, in treating epilepsy and associated cardiac abnormalities in a pentylenetetrazol (PTZ) kindling rat model of epilepsy.

View Article and Find Full Text PDF

Effect of electroacupuncture on vascular remodeling in rats with cerebral ischemia by regulating irisin based on VEGF/Akt/eNOS signaling pathway.

Brain Res Bull

January 2025

School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China; Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China; National Center for Neurological Disorders, Huashan Hospital, Fudan University, Shanghai, China; National Clinical Research Center for Geriatric Diseases, Huashan Hospital, Fudan University, Shanghai, China. Electronic address:

Article Synopsis
  • The study investigated how electroacupuncture (EA) affects irisin secretion and its role in recovering brain function and blood vessel health after a stroke in rats.
  • The research showed that EA increased irisin levels significantly after seven days and improved neurobehavioral function while reducing brain damage and enhancing blood flow and vascular growth.
  • These beneficial effects of EA were weakened when the gene responsible for irisin production was silenced, suggesting that irisin plays a critical role in EA’s therapeutic effects on brain recovery.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!