Transformation of Al(NO3)3∙9H2O (upon heating in the range of 20-1200 °C) into blends of amorphous and crystalline boehmite (210-525 °C), amorphous alumina and crystalline γ-Al2O3 (850 °C), and crystalline α-Al2O3 (1100 °C) was analyzed using X-ray diffraction (XRD), high-resolution transmission electron microscope (HRTEM), infrared (IR) spectroscopy, thermogravimetry, and low-temperature nitrogen adsorption. Boehmite consists of nanoparticles of 6-10 nm in diameter, and part of them has crystalline structure observed in HRTEM images, despite they are XRD amorphous. The nanoglobules are surrounded by amorphous aluminum hydroxide with chains of -AlO(H)-O-AlO(H)- of 1-5 nm in length. Heating of samples at 350-525 °C gives mesoporous aluminum hydroxide with a relatively narrow pore size distribution. An increase in calcination temperature to 850 °C decreases the porosity of alumina composed of amorphous and crystalline (γ-Al2O3) phases. Calcination at 1100 °C gives α-Al2O3 with strongly decreased porosity of aggregates.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4801842PMC
http://dx.doi.org/10.1186/s11671-016-1366-0DOI Listing

Publication Analysis

Top Keywords

amorphous crystalline
8
crystalline γ-al2o3
8
aluminum hydroxide
8
amorphous
5
crystalline
5
structural morphological
4
morphological features
4
features disperse
4
disperse alumina
4
alumina synthesized
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!