We demonstrate that functionalized graphene, rich with lattice defects but lean with oxygen sites, catalyzes the reduction of Co(III)(bpy)3 as well as platinum does, exhibiting a rate of heterogeneous electron transfer, k0, of ∼6 × 10(-3) cm/s. We show this rate to be an order of magnitude higher than on oxygen-site-rich graphene oxide, and over 2 orders of magnitude higher than on the basal plane of graphite (as a surrogate for pristine graphene). Furthermore, dye-sensitized solar cells using defect-rich graphene monolayers perform similarly to those using platinum nanoparticles as the catalyst.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.6b00937 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!