A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Formate-derived H2 , a driver of hydrogenotrophic processes in the root-zone of a methane-emitting fen. | LitMetric

Wetlands are important sources of globally emitted methane. Plants mediate much of that emission by releasing root-derived organic carbon, including formate, a direct precursor of methane. Thus, the objective of this study was to resolve formate-driven processes potentially linked to methanogenesis in the fen root-zone. Although, formate was anticipated to directly trigger methanogenesis, the rapid anaerobic consumption of formate by Carex roots unexpectedly yielded H2 and CO2 via enzymes such as formate-H2 -lyase (FHL), and likewise appeared to enhance the utilization of organic carbon. Collectively, 57 [FeFe]- and [NiFe]-hydrogenase-containing family level phylotypes potentially linked to FHL activity were detected. Under anoxic conditions, root-derived fermentative Citrobacter and Hafnia isolates produced H2 from formate via FHL. Formate-derived H2 fueled methanogenesis and acetogenesis, and methanogenic (Methanoregula, Methanobacterium, Methanocella) and acetogenic (Acetonema, Clostridum, Sporomusa) genera potentially linked to these hydrogenotrophic activities were identified. The findings (i) provide novel insights on highly diverse root-associated FHL-containing taxa that can augment secondary hydrogenotrophic processes via the production of formate-derived H2 , (ii) demonstrate that formate can have a 'priming' effect on the utilization of organic carbon, and (iii) raise questions regarding the fate of formate-derived H2 when it diffuses away from the root-zone.

Download full-text PDF

Source
http://dx.doi.org/10.1111/1462-2920.13301DOI Listing

Publication Analysis

Top Keywords

organic carbon
12
hydrogenotrophic processes
8
utilization organic
8
formate
5
formate-derived
4
formate-derived driver
4
driver hydrogenotrophic
4
processes root-zone
4
root-zone methane-emitting
4
methane-emitting fen
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!