Noble-metal nanoframes are of great interest to many applications due to their unique open structures. Among various noble metals, Ru has never been made into nanoframes. In this study, we report for the first time an effective method based on seeded growth and chemical etching for the facile synthesis of Ru nanoframes with high purity. The essence of this approach is to induce the preferential growth of Ru on the corners and edges of Pd truncated octahedra as the seeds by kinetic control. The resultant Pd-Ru core-frame octahedra could be easily converted to Ru octahedral nanoframes of ∼2 nm in thickness by selectively removing the Pd cores through chemical etching. Most importantly, in this approach the face-centered cubic (fcc) crystal structure of Pd seeds was faithfully replicated by Ru that usually takes an hcp structure. The fcc Ru nanoframes showed higher catalytic activities toward the reduction of p-nitrophenol by NaBH4 and the dehydrogenation of ammonia borane compared with hcp Ru nanowires with roughly the same thickness.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.nanolett.6b00607 | DOI Listing |
ChemSusChem
January 2025
Dalian University of Technology, State Key Laboratory of Fine Chemicals, 2 Ligong Rd., 116024, Dalian, CHINA.
Understanding the impact of surface copper valence states on the distribution of electrochemical carbon dioxide products is critical. Herein, CuO@Cu2O with a Cu2+/Cu+ interface was fabricated using wet chemical etching approach. The hollow shape offered a large region for gas adsorption, while the interfacial mixed chemical state of Cu2+/Cu+ with tunable control ratio raised the local density of CHO* and accelerated the carbon-carbon coupling reaction.
View Article and Find Full Text PDFSmall
January 2025
State Key Laboratory of Biocatalysis and Enzyme Engineering, Stem Cells and Tissue Engineering Manufacture Center, School of Life Science, Hubei University, Wuhan, Hubei, 430062, China.
Recent advances in drug design and compound synthesis have highlighted the increasing need for effective methods of toxicity evaluation. A specialized force sensor, known as the light wavelength-encoded "Chinese guzheng" is developed. This innovative sensor is equipped with optical fiber strings and utilizes a wavelength-encoded fiber Bragg grating (FBG) that is chemically etched to reduce its diameter.
View Article and Find Full Text PDFNanoscale
January 2025
National Engineering Research Center for High-Efficiency Grinding, State Key Laboratory of Advanced Design and Manufacturing Technology for Vehicle, College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, China.
Rechargeable alkaline zinc batteries are emerging as promising candidates for next-generation energy storage systems, owing to their affordability, eco-friendliness and high energy density. However, their widespread application is hindered by stability challenges, particularly in alkaline environments, due to cathode corrosion and deformation, as well as dendrite formation and unwanted side reactions at the Zn anode. To address these issues, we successfully developed a 3D nickel micromesh-supported NiCoP (3D NM@NiCoP) electrode.
View Article and Find Full Text PDFNano Lett
January 2025
Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha 410082, China.
Two-dimensional (2D) semiconductors have attracted a considerable amount of interest as channel materials for future transistors. Patterning of 2D semiconductors is crucial for separating continuous monolayers into independent units. However, the state-of-the-art 2D patterning process is largely based on photolithography and high-energy plasma/RIE etching, leading to unavoidable residues and degraded device uniformity, which remains a critical challenge for the practical application of 2D electronics.
View Article and Find Full Text PDFACS Nano
January 2025
Department of Physics and Engineering Physics, Tulane University, New Orleans, Louisiana 70118, United States.
Herein, we report the synthesis of two-dimensional TaSeC (2D-TaSeC) nanosheets using electrochemical lithiation in multilayer TaSeC followed by sonication in deionized water. Multilayer TaSeC was obtained via solid-state synthesis of FeTaSeC followed by chemical etching of Fe. 2D-TaSeC exhibited promising electrocatalytic activity for the hydrogen evolution reaction from water compared to multilayer TaSeC and 2D-TaSe.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!