Various strategies exist to stabilize de novo designed synthetic peptide β-hairpins or β-sheets structures, especially at the non-hydrogen bonding position. However, strategies to stabilize strand termini, which are affected by fraying, are highly limited. Here, by substituting N-terminal aliphatic amino acid with its mirror image counterpart, we achieve a significant increase in scaffold stabilization, resulting from the formation of a terminal aliphatic-aromatic hydrophobic CH…pi cluster. Our extensive solution NMR studies support the incorporation of an N-terminal d-aliphatic amino acid in the design of short β-hairpins, while successfully retaining the overall structural scaffold. © 2016 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 106: 260-266, 2016.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/bip.22837 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!