The need for developing real disease-modifying drugs against neurodegenerative syndromes, particularly Alzheimer's disease (AD), shifted research towards reliable drug discovery strategies to unveil clinical candidates with higher therapeutic efficacy than single-targeting drugs. By following the multi-target approach, we designed and synthesized a novel class of dual acetylcholinesterase (AChE)-monoamine oxidase B (MAO-B) inhibitors through the decoration of the 2H-chromen-2-one skeleton. Compounds bearing a propargylamine moiety at position 3 displayed the highest in vitro inhibitory activities against MAO-B. Within this series, derivative 3h emerged as the most interesting hit compound, being a moderate AChE inhibitor (IC50 = 8.99 µM) and a potent and selective MAO-B inhibitor (IC50 = 2.8 nM). Preliminary studies in human neuroblastoma SH-SY5Y cell lines demonstrated its low cytotoxicity and disclosed a promising neuroprotective effect at low doses (0.1 µM) under oxidative stress conditions promoted by two mitochondrial toxins (oligomycin-A and rotenone). In a Madin-Darby canine kidney (MDCK)II-MDR1 cell-based transport study, Compound 3h was able to permeate the BBB-mimicking monolayer and did not result in a glycoprotein-p (P-gp) substrate, showing an efflux ratio = 0.96, close to that of diazepam.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6273473 | PMC |
http://dx.doi.org/10.3390/molecules21030362 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!