We introduce actively tunable diffractive optical elements fabricated from shape-memory polymers (SMPs). By utilizing the shape-memory effect of the polymer, at least one crucial attribute of the diffractive optical element (DOE) is tunable and adjustable subsequent to the completed fabrication process. A thermoplastic, transparent, thermoresponsive polyurethane SMP was structured with diverse diffractive microstructures via hot embossing. The tunability was enabled by programming a second, temporary shape into the diffractive optical element by mechanical deformation, either by stretching or a second embossing cycle at low temperatures. Upon exposure to the stimulus heat, the structures change continuously and controllable in a predefined way. We establish the novel concept of shape-memory diffractive optical elements by illustrating their capabilities, with regard to tunability, by displaying the morphing diffractive pattern of a height tunable and a period tunable structure, respectively. A sample where an arbitrary structure is transformed to a second, disparate one is illustrated as well. To prove the applicability of our tunable shape-memory diffractive optical elements, we verified their long-term stability and demonstrated the precise adjustability with a detailed analysis of the recovery dynamics, in terms of temperature dependence and spatially resolved, time-dependent recovery.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.6b00679 | DOI Listing |
Nat Commun
January 2025
Department of Biomedical Engineering, Duke University, Durham, NC, USA.
Acoustically probing biological tissues with light or sound, photoacoustic and ultrasound imaging can provide anatomical, functional, and/or molecular information at depths far beyond the optical diffusion limit. However, most photoacoustic and ultrasound imaging systems rely on linear-array transducers with elevational focusing and are limited to two-dimensional imaging with anisotropic resolutions. Here, we present three-dimensional diffractive acoustic tomography (3D-DAT), which uses an off-the-shelf linear-array transducer with single-slit acoustic diffraction.
View Article and Find Full Text PDFLangmuir
January 2025
Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, United States.
The self-assembly of nanoparticle colloids into large-area monolayers with long-range order is a grand challenge in nanotechnology. Using acoustic energy, i.e.
View Article and Find Full Text PDFHeliyon
January 2025
Department of Physics, Facility of Science, King Abdulaziz University, Jeddah, Saudi Arabia.
The influence of variations in indium concentration and temperature on threshold current density (J) in In Ga As/GaAs ( = 0, 0.8 and 0.16) quantum dot (QD) laser diodes - synthesized via molecular beam epitaxy (MBE) with three distinct indium concentrations on GaAs (001) substrates - was meticulously examined.
View Article and Find Full Text PDFInorg Chem
January 2025
School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, Singapore 63798, Singapore.
The corrugated <110> oriented layered metal halide perovskites (MHP) are gaining increased attention for a variety of properties including intrinsic white light emission. One prototypical candidate is 1-(3-aminopropyl)imidazole lead bromide, which was reported to crystallize as the <110> oriented perovskite (API)PbBr [API = 1-(3-aminopropyl)imidazole]. This work shows that under similar reaction conditions, the same components can instead form (API)PbBr, which has a "perovskitoid" structure.
View Article and Find Full Text PDFSoft Matter
January 2025
Dipartimento di Chimica e Chimica Industriale, University of Pisa, via Moruzzi 13, Pisa 56124, Italy.
In the field of chiral smectic liquid crystals, orthoconic antiferroelectric liquid crystals (OAFLCs) have attracted the interest of the scientific community due to the very high tilt angle, close to 45°, and the consequent optical properties. In the present study, the first H NMR investigation is reported on two samples, namely 3F5HPhF9 and 3F7HPhF8, showing the phase sequence isotropic-SmC*-SmC* and the phase sequence isotropic-SmA-SmC*-SmC*, respectively, when cooling from the isotropic to the crystalline phases. To this aim, the liquid crystals were doped with a small amount of deuterated probe biphenyl-4,4'-diol-d.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!