Several high-resolution Mössbauer spectra of yttrium iron garnet, Y3Fe5O12, have been fit as a function of temperature with a new model based on a detailed analysis of the spectral changes that result from a reduction from the cubic Ia3̅d space group to the trigonal R3̅ space group. These spectral fits indicate that the magnetic sextet arising from the 16a site in cubic symmetry is subdivided into three sextets arising from the 6f, the 3d, 3d, and the 1a, 1b, 2c sites in rhombohedral-axis trigonal symmetry. The 24d site in cubic Ia3̅d symmetry is subdivided into four sextets arising from four different 6f sites in R3̅ rhombohedral-axis trigonal symmetry, sites that differ only by the angles between the principal axis of the electric field gradient tensor and the magnetic hyperfine field assumed to be parallel with the magnetic easy axis. This analysis, when applied to the potential nuclear waste storage compounds Y(3-x)Ca(0.5x)Th(0.5x)Fe5O12 and Y(3-x)Ca(0.5x)Ce(0.5x)Fe5O12, indicates virtually no perturbation of the structural, electronic, and magnetic properties upon substitution of small amounts of calcium(II) and thorium(IV) or cerium(IV) onto the yttrium(III) 24c site as compared with Y3Fe5O12. The observed broadening of the four different 6f sites derived from the 24d site results from the substitution of yttrium(III) with calcium(II) and thorium(IV) or cerium(IV) cations on the next-nearest neighbor 24c site. In contrast, the same analysis applied to Y(2.8)Ce(0.2)Fe5O12 indicates a local perturbation of the magnetic exchange pathways as a result of the presence of cerium(IV) in the 24c next-nearest neighbor site of the iron(III) 24d site.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.inorgchem.5b02769 | DOI Listing |
BMC Biol
January 2025
The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, China.
Background: The variations in alliin content are a crucial criterion for evaluating garlic quality and is the sole precursor for allicin biosynthesis, which is significant for the growth, development, and stress response of garlic. WRKY transcription factors are essential for enhancing stress resistance by regulating the synthesis of plant secondary metabolites. However, the molecular mechanisms regulating alliin biosynthesis remain unexplored.
View Article and Find Full Text PDFPest Manag Sci
January 2025
School of Agriculture, Food and Wine, University of Adelaide, Glen Osmond, Australia.
Background: 2,4-Dichlorophenoxyacetic acid (2,4-D) and other auxinic herbicides are important for weed control in cropping systems globally. Weeds with resistance to 2,4-D and other auxinic herbicides have evolved, including several populations of Sonchus oleraceus from multiple sites in Australia. We report the underlying mechanism in these populations that gives rise to auxinic herbicide resistance.
View Article and Find Full Text PDFSci Data
August 2024
Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China.
Pest Manag Sci
December 2024
Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
The commercialization of 2,4-D (2,4-dichlorophenoxyacetic acid) latifolicide in 1945 marked the beginning of the selective herbicide market, with this active ingredient playing a pivotal role among commercial herbicides due to the natural tolerance of monocots compared with dicots. Due to its intricate mode of action, involving interactions within endogenous auxin signaling networks, 2,4-D was initially considered a low-risk herbicide to evolve weed resistance. However, the intensification of 2,4-D use has contributed to the emergence of 2,4-D-resistant broadleaf weeds, challenging earlier beliefs.
View Article and Find Full Text PDFActa Crystallogr C Struct Chem
May 2024
Department of Inorganic Chemistry, Ivan Franko Lviv National University, Kyryla and Mefodiya str. 6, 79005 Lviv, Ukraine.
The ternary germanide MgNiGe (cubic, space group Fm-3m, cF116) belongs to the structural family based on the ThMn-type. The Ge1 and Ge2 atoms fully occupy the 4a (m-3m symmetry) and 24d (m.mm) sites, respectively.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!