Computational exploration of the reaction mechanism of the Cu(+)-catalysed synthesis of indoles from N-aryl enaminones.

R Soc Open Sci

FP/ENAS, Faculdade de Ciências da Saúde , Universidade Fernando Pessoa , Rua Carlos da Maia, 296, Porto 4200-150, Portugal.

Published: February 2016

We have studied the role of Cu(+)-phenantroline as a catalyst in the cyclization of N-aryl-enaminones using density-functional theory computations. The catalyst was found to bind the substrate upon deprotonation of its eneaminone, and to dramatically increase the acidity of the carbon adjacent to the ketone functionality. The deprotonation of this carbon atom yields a carbanion which attacks the aryl moiety, thereby closing the heterocycle in the rate-determining step. This C-C bond forming reaction was found to proceed much more rapidly when preceded by re-protonation of the substrate N-atom (which had lost H(+) in the initial step). Hydride transfer to the catalyst then completes the indole synthesis, in a very fast step. The influence of Li(+) and K(+) on the regio-selectivity of the cyclization of bromo-substituted analogues could not, however, be reproduced by our model. Alternative pathways involving either single-electron transfer from the catalyst to the substrate or ring cyclization without previous carbon α-deprotonation were found to be kinetically or thermodynamically inaccessible.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4785979PMC
http://dx.doi.org/10.1098/rsos.150582DOI Listing

Publication Analysis

Top Keywords

transfer catalyst
8
computational exploration
4
exploration reaction
4
reaction mechanism
4
mechanism cu+-catalysed
4
cu+-catalysed synthesis
4
synthesis indoles
4
indoles n-aryl
4
n-aryl enaminones
4
enaminones studied
4

Similar Publications

Photochemical Deracemization of 4,7-Diaza-1-isoindolinones by Unidirectional Hydrogen Atom Shuttling.

J Am Chem Soc

December 2024

School of Natural Sciences, Department Chemie, and Catalysis Research Center (CRC), Technische Universität München, Lichtenbergstrasse 4, 85747 Garching, Germany.

By coupling a photochemical and a thermal step, a single chiral catalyst can establish a photostationary state in which the enantiopure form of a chiral compound is favored over its racemate. Following this strategy, 3-substituted 4,7-diaza-1-isoindolones were successfully deracemized (74-98% yield, 86-99% ) employing 2.5 mol % of a photocatalyst.

View Article and Find Full Text PDF

How does dopamine convert into norepinephrine? Insights on the key step of the reaction.

J Mol Model

January 2025

Laboratorio de Química Teórica Computacional (QTC), Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, 7820436, Santiago de Chile, Chile.

Context: Dopamine -monooxygenase (D M) is an essential enzyme in the organism that regioselectively converts dopamine into R-norepinephrine, the key step of the reaction, studied in this paper, is a hydrogen atom transfer (HAT) from dopamine to a superoxo complex on D M, forming a hydroperoxo intermediate and dopamine radical. It was found that the formation of a hydrogen bond between dopamine and the D M catalyst strengthens the substrate-enzyme interaction and facilitates the HAT which takes place selectively to give the desired enantiomeric form of the product. Six reactions leading to the hydroperoxo intermediate were analyzed in detail using theoretical and computational tools in order to identify the most probable reaction mechanism.

View Article and Find Full Text PDF

Carbon-supported Pt-based catalysts are the most effective catalysts for direct methanol fuel cells (DMFCs). However, challenges such as high Pt loading, cost, and susceptibility to CO poisoning severely hinder the development of DMFCs. In this paper, CoFeO@polymer@ZIF-67 is prepared successfully through sequential solution polymerization and in situ growth with modified CoFeO as the core.

View Article and Find Full Text PDF

Carbon Defects as Highly Active Sites for Gold Detection and Recovery.

Angew Chem Int Ed Engl

January 2025

Shanghai Normal University, Chemistry, No. 100, Guilin Road, 200234, Shanghai, CHINA.

The use of precious metals (PMs) in many areas, such as printed circuit boards, catalysts, and target drugs, is increasing due to their unique physical and chemical properties, but their recovery remains a great challenge in terms of zero-valent PMs as final product. We report a highly hydrophilic carbon dot (CD) as reductant (electron donor), the defects in CD served as efficient active sites for zero-valent PMs recovery with an electron-donating capacity is ~1.7 mmol g-1.

View Article and Find Full Text PDF

Platinum single atoms on titania aid dye photodegradation whereas platinum nanoparticles do not.

Nanoscale

January 2025

Department of Materials Science and Engineering, Chair for Surface Science and Corrosion (WW4-LKO), Friedrich-Alexander-Universität Erlangen-Nürnberg, Martensstraße 7, 91058 Erlangen, Germany.

The photocatalytic degradation of unwanted organic species has been investigated for decades using modified and non-modified titania nanostructures. In the present study, we investigate the co-catalytic effect of single atoms (SAs) of Pt and Pt nanoparticles on titania substrates on the degradation of the two typical photodegradation model pollutants: Acid Orange 7 (AO7) and Rhodamine B (RhB). For this, we use highly defined sputter deposited anatase layers and load them with Pt SAs at different loading densities or alternatively with Pt nanoparticles.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!