Large demyelinating inflammatory central nervous system (CNS) lesions may present with contrast enhancement on magnetic resonance imaging and may mimic CNS tumors such as glioma. In ambiguous cases, new diagnostic tools that may be helpful for distinguishing between demyelinating inflammatory and neoplastic CNS lesions are required. The current study presents the case of a patient with a large contrast-enhanced frontal brain lesion, who was initially diagnosed with tumefactive multiple sclerosis. Following the progression of the brain lesion, an F-fluoroethyl-L-tyrosine positron emission tomography (F-FET PET) was performed, revealing markedly elevated static F-FET uptake parameters along with time activity-curves consistent with glioma. Subsequently, a biopsy was undertaken, which confirmed the presence of anaplastic oligoastrocytoma. This case illustrates that F-FET PET may provide useful diagnostic information in cases where distinction between neoplastic and demyelinating inflammatory CNS lesions is challenging. However, further systematic and prospective analyses are warranted to explore the value of this method in this setting.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4774557PMC
http://dx.doi.org/10.3892/ol.2016.4189DOI Listing

Publication Analysis

Top Keywords

demyelinating inflammatory
12
cns lesions
12
f-fluoroethyl-l-tyrosine positron
8
positron emission
8
emission tomography
8
tumefactive multiple
8
multiple sclerosis
8
brain lesion
8
f-fet pet
8
tomography differential
4

Similar Publications

Guillain-Barré syndrome following falciparum malaria infection: a case report.

BMC Neurol

January 2025

Department of Radiology, School of Medicine, College of Medicine and Health Sciences, Mizan-Tepi University, Mizan-Teferi, Ethiopia.

Background: Malaria is an infectious disease caused by Plasmodium parasites, transmitted to humans by infected female Anopheles mosquitoes. Five Plasmodium species infect humans: P. vivax, P.

View Article and Find Full Text PDF

Ferroptosis: A New Pathway in the Interaction between Gut Microbiota and Multiple Sclerosis.

Front Biosci (Landmark Ed)

January 2025

The First College of Clinical Medical Science, China Three Gorges University, 443000 Yichang, Hubei, China.

Multiple sclerosis (MS) is a chronic autoimmune disorder marked by neuroinflammation, demyelination, and neuronal damage. Recent advancements highlight a novel interaction between iron-dependent cell death, known as ferroptosis, and gut microbiota, which may significantly influences the pathophysiology of MS. Ferroptosis, driven by lipid peroxidation and tightly linked to iron metabolism, is a pivotal contributor to the oxidative stress observed in MS.

View Article and Find Full Text PDF

Testing for myelin oligodendrocyte glycoprotein immunoglobulin G antibodies (MOG-IgG) is essential to the diagnosis of MOG antibody-associated disease (MOGAD). Due to its central role in the evaluation of suspected inflammatory demyelinating disease, the last 5 years has been marked by an abundance of research into MOG-IgG testing ranging from appropriate patient selection, to assay performance, to utility of serum titers as well as cerebrospinal fluid (CSF) testing. In this review, we synthesize current knowledge pertaining to the "who, what, where, when, why, and how" of MOG-IgG testing, with the aim of facilitating accurate MOGAD diagnosis in clinical practice.

View Article and Find Full Text PDF

Multiple sclerosis (MS) is a chronic inflammatory, autoimmune, and neurodegenerative disease of the central nervous system. The disease can manifest and progress with both physical and cognitive symptoms, affecting the patient's daily activities. The aim of our study was to investigate the correlation between functional status, cognitive functions, and neurofilament light chain levels in plasma in MS patients.

View Article and Find Full Text PDF

The kappa index is a well-established marker of intrathecal synthesis (IS) of immunoglobulin (Ig). Routinely used for diagnostic aims, IgG IS, which can be assessed quantitatively (ad hoc formulas) or qualitatively (oligoclonal bands, OCBs), may fail in detecting a humoral immune response within the central nervous system (CNS). The main aim of this study was to evaluate the kappa index for its ability to detect the presence of CNS humoral immunity and to associate it with a distinct group of disorders, in the absence of IgG IS/OCBs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!